設(shè),求的值。

解析試題分析:先求出來,再由求出,一定要注意定義域選擇好解析式.

,而
 
考點(diǎn):分段函數(shù)的求值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是增函數(shù).
⑴求實(shí)數(shù)的取值范圍
⑵當(dāng)中最小值時(shí),定義數(shù)列滿足:,且,
用數(shù)學(xué)歸納法證明,并判斷的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)萬件,需另投入的成本為(單位:萬元),當(dāng)年產(chǎn)量小于80萬件時(shí),;當(dāng)年產(chǎn)量不小于80萬件時(shí),.假設(shè)每萬件該產(chǎn)品的售價(jià)為50萬元,且該廠當(dāng)年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時(shí),該廠在該產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),不等式的解集為.
(1)求的解析式; 
(2)若函數(shù)上單調(diào),求實(shí)數(shù)的取值范圍;
(3)若對(duì)于任意的x∈[-2,2],都成立,求實(shí)數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)當(dāng),時(shí),若不等式恒成立,求的范圍;
(2)試判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點(diǎn).
(1)求f(x)的解析式;
(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對(duì)稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn);
(3)當(dāng)月產(chǎn)量為多少噸時(shí), 每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=2-x2+ax+1在區(qū)間(-∞,3)內(nèi)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案