【題目】某中學校本課程開設了A,B,C,D共4門選修課,每個學生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學生.
(1)求這3名學生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學生選擇的概率;
(3)求A選修課被這3名學生選擇的人數(shù)ξ的分布列及數(shù)學期望.

【答案】
(1)解:每個學生有四個不同的選擇,

根據(jù)分步乘法計數(shù)原理,

這3名學生選修課所有選法的總數(shù)N=4×4×4=64


(2)解:恰有2門選修課這3名學生都沒選擇的概率為:

= =


(3)解:A選修課被這3名學生選擇的人數(shù)為ξ,則ξ的可能取值為0,1,2,3,

P(ξ=0)= =

P(ξ=1)= = ,

P(ξ=2)= =

P(ξ=3)= = ,

∴ξ的分布列為:

ξ

0

1

2

3

P

Eξ= =


【解析】(1)每個學生有四個不同的選擇,由此根據(jù)分步乘法計數(shù)原理,能求出這3名學生選修課所有選法的總數(shù).(2)由已知利用排列組合知識能求出恰有2門選修課這3名學生都沒選擇的概率.(3)A選修課被這3名學生選擇的人數(shù)為ξ,則ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列和Eξ.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的橢圓方程:
(1)長軸在x軸上,長軸長等于12,離心率等于 ;
(2)橢圓經(jīng)過點(﹣6,0)和(0,8);
(3)橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強市民的環(huán)境保護組織,某市面向全市征召n名義務宣傳志愿者,成立環(huán)境保護宣傳組織,現(xiàn)按年齡把該組織的成員分成5組:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的頻率分布直方圖如圖所示,已知該組織的成員年齡在[35,40)內(nèi)有20人

(1)求該組織的人數(shù);
(2)若從該組織年齡在[20,25),[25,30),[30,35)內(nèi)的成員中用分層抽樣的方法共抽取14名志愿者參加某社區(qū)的宣傳活動,問應各抽取多少名志愿者?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為 ,每命中一次得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊. (Ⅰ)求該射手恰好命中一次得的概率;
(Ⅱ)求該射手的總得分X的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻轉過程中: ①|BM|是定值;
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是(

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一組數(shù)據(jù):1,1,4,5,5,5,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(
A.5和4
B.5和4.5
C.5和5
D.1和5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,3,4,5,6},B={4,5,6,7,8},則滿足SA且S∩B≠的集合S的個數(shù)是(
A.57
B.56
C.49
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù), .(1)討論的極值點的個數(shù);(2)若對于,總有.(i)求實數(shù)的取值范圍;(ii)求證:對于,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

同步練習冊答案