已知函數(shù)是奇函數(shù),
(1)求實(shí)數(shù)a和b的值;
(2)判斷函數(shù)y=f(x)在(1,+∞)的單調(diào)性,并利用定義加以證明.
【答案】分析:(1)由題意可得f(0)=0,從而可求得a,又f(x)是奇函數(shù),可求得b;
(2)由函數(shù)單調(diào)性的定義判斷即可.任取x1,x2∈(1,+∞),設(shè)x1<x2,作差f(x1)-f(x2)后化積,判斷符號即可.
解答:解:(1)∵f(x)=是奇函數(shù),
∴f(0)==0,
∴a=0;…(2分)
又因f(-x)=-f(x),即,
∴b=0…(4分)
(2)函數(shù)y=f(x)在(1,+∞)單調(diào)遞減….(6分)
證明:任取x1,x2∈(1,+∞),設(shè)x1<x2

=,…(8分)
∵x1<x2,
∴x1-x2<0;
∵x1>1,x2>1,
∴1-x1x2<0
∴f(x1)-f(x2)>0,
∴f(x1)>f(x2)…(10分)
函數(shù)y=f(x)在(1,+∞)單調(diào)遞減…(12分)
點(diǎn)評:本題考查函數(shù)的奇偶性與單調(diào)性的應(yīng)用,著重考查函數(shù)的奇偶性與單調(diào)性的定義的應(yīng)用,突出轉(zhuǎn)化思想的考查,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x+1
x-1
,(a>0,且a≠1)
(Ⅰ)求函數(shù)的定義域,并證明f(x)=loga
x+1
x-1
在定義域上是奇函數(shù);
(Ⅱ)對于x∈[2,4]f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,求m的取值范圍;
(Ⅲ)當(dāng)n≥2,且n∈N*時(shí),試比較af(2)+f(3)+…+f(n)與2n-2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)h(x)=2x,且h(x)=f(x)+g(x),其中f(x)是偶函數(shù),g(x)是奇函數(shù).
(1)求f(x)和g(x)的解析式;
(2)證明:f(x)是(0,+∞)上的單調(diào)增函數(shù);
(3)設(shè)F(x)=4a•[g(x)+2-x-1]+4x+1,x∈[0,2],討論F(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個(gè)函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建省四地六校高三上學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)    是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)求函數(shù)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)    是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)求函數(shù)的值域

查看答案和解析>>

同步練習(xí)冊答案