【題目】函數(shù)圖象上不同兩點(diǎn)處切線的斜率分別是規(guī)定為線段的長(zhǎng)度)叫做曲線在點(diǎn)之間的平方彎曲度,給出以下命題:

①函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為12,則;

②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的平方彎曲度為常數(shù);

③設(shè)點(diǎn),是拋物線上不同的兩點(diǎn),則;

④設(shè)曲線是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn),,且,則的最大值為.

其中真命題的序號(hào)為__________(將所有真命題的序號(hào)都填上)

【答案】①②④

【解析】

.根據(jù)新定義利用導(dǎo)數(shù)求出函數(shù)彎曲度即可判斷..舉例判斷..根據(jù)新定義利用導(dǎo)數(shù)求出函數(shù)彎曲度即可判斷.④根據(jù)新定義利用導(dǎo)數(shù)求出函數(shù)彎曲度即可判斷.

①由,故,又,故,∴.故①正確.

②常數(shù)函數(shù)滿足圖象上任意兩點(diǎn)之間的彎曲度為常數(shù),故②正確;

③設(shè),,又,∴,,∴,取,,則,故③錯(cuò)誤.

④因?yàn)?/span>,所以,由題意可得,令,則,當(dāng)且僅當(dāng),即時(shí),取等號(hào).故④正確.

故答案為:①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐SABCD中,MSB的中點(diǎn),ABCD,BCCD,且ABBC2,CDSD1,又SD⊥面SAB

1)證明:CDSD;

2)證明:CM∥面SAD

3)求四棱錐SABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某面包店隨機(jī)收集了面包種類的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:

面包類型

第一類

第二類

第三類

第四類

第五類

第六類

面包個(gè)數(shù)

90

60

30

80

100

40

好評(píng)率

0.6

0.45

0.7

0.35

0.6

0.5

好評(píng)率是指:一類面包中獲得好評(píng)的個(gè)數(shù)與該類面包的個(gè)數(shù)的比值.

1)從面包店收集的面包中隨機(jī)選取1個(gè),求這個(gè)面包是獲得好評(píng)的第五類面包的概率;

2)從面包店收集的面包中隨機(jī)選取1個(gè),估計(jì)這個(gè)面包沒有獲得好評(píng)的概率;

3)面包店為增加利潤(rùn),擬改變生產(chǎn)策略,這將導(dǎo)致不同類型面包的好評(píng)率發(fā)生變化.假設(shè)表格中只有兩類面包的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類面包的好評(píng)率增加0.1,哪類面包的好評(píng)率減少0.1,使得獲得好評(píng)的面包總數(shù)與樣本中的面包總數(shù)的比值達(dá)到最大?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切于點(diǎn),圓心軸上.

(1)求圓的方程;

(2)過點(diǎn)且不與軸重合的直線與圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線分別與直線相交于兩點(diǎn),記,的面積分別是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)是 ,且橢圓經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過左焦點(diǎn)且傾斜角為45°的直線與橢圓交于兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓a1.

)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a、k表示);

)若任意以點(diǎn)A0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成,,,五組,并作出如圖頻率分布直方圖:

(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽取2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為戶,求的分布列和數(shù)學(xué)期望;

(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如圖,根據(jù)圖表格中所給數(shù)據(jù),分別求,,,,,,的值,并說明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

經(jīng)濟(jì)損失不超過4000元

經(jīng)濟(jì)損失超過4000元

合計(jì)

捐款超過500元

捐款不超過500元

合計(jì)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:臨界值表參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)到定點(diǎn)的距離之比它到直線的距離小1,設(shè)動(dòng)點(diǎn)的軌跡為曲線,過點(diǎn)的直線交曲線兩個(gè)不同的點(diǎn),過點(diǎn)分別作曲線的切線,且二者相交于點(diǎn).

(1)求曲線的方程;

(2)求證:

(3)求 的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案