函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1、x2∈D,有f=f(x1)+f(x2
(1)求f(-1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)如果f()=1,且f(x)在(0,+∞)上是增函數(shù),若f(x+5)+f(x)≥2,求x的取值范圍.
【答案】分析:(1)對于任意x1、x2∈D,有f(x1•x2)=f(x1)+f(x2),令x1=x2=1,可求f(1)
(2)由(1)賦值可求f(-1)=0,進而可求f(-1×x)=f(-x)=f(1)+f(x)=f(x),可得f(x)為偶函數(shù)
(3)由已知f()=1可求得,f(6)=f(×)=2f()=2,由f(x+5)+f(x)≥2及f(x)在(0,+∞)上是增函數(shù)可得,解不等式可求
解答:解:(1)對于任意x1、x2∈D,有f(x1•x2)=f(x1)+f(x2
令x1=x2=1,f(1)=f(1)+f(1)=2f(1)
∴f(1)=0
(2)∵f[(-1)×(-1)]=f(-1)+f(-1)=2f(-1)=0
∴f(-1)=0
則f(-1×x)=f(-x)=f(1)+f(x)=f(x)
∴f(x)為偶函數(shù)
(3)∵f()=1
∴f(6)=f(×)=2f()=2
∴f(x+5)+f(x)≥2⇒f[x(x+5)]≥2=f(6)
∵f(x)在(0,+∞)上是增函數(shù)

∴x≥1.
點評:對于抽象函數(shù)的函數(shù)值的求解一般采用賦值法,而對抽象函數(shù)的單調(diào)性的求解可以利用函數(shù)的單調(diào)性的定義,結(jié)合賦值法可求.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為{x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域為(-1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域為[-1,2],則函數(shù)
f(x+2)
x
的定義域為( 。
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習冊答案