函數(shù)y=
ax-1
的定義域是(-∞,0],則a的取值范圍是( 。
A、a>0B、a>1
C、0<a<1D、a≠1
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把函數(shù)y=
ax-1
的定義域是(-∞,0]轉(zhuǎn)化為ax-1≥0對任意的x∈(-∞,0]恒成立,分類討論后結(jié)合指數(shù)函數(shù)的值域得答案.
解答: 解:函數(shù)y=
ax-1
的定義域是(-∞,0],
即ax-1≥0對任意的x∈(-∞,0]恒成立,
即ax≥1對任意的x∈(-∞,0]恒成立,
當(dāng)a>1時,由指數(shù)函數(shù)的值域可知,在x∈(-∞,0]上ax≤1,不滿足題意;
當(dāng)0<a<1時,由指數(shù)函數(shù)的值域可知,在x∈(-∞,0]上ax≥1,滿足題意.
∴a的取值范圍是0<a<1.
故選:C.
點評:本題考查了函數(shù)的定義域及其求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,考查了指數(shù)函數(shù)的值域,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將進貨單價為8元的商品按10元一個銷售時,每天可賣出100個,若這種商品的銷售單價每漲1元,日銷售量就減少10個,為了獲得最大利潤,銷售單價應(yīng)定為( 。
A、12B、13C、14D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=|
b
|=2,
a
b
=2,則|
a
-
b
|=(  )
A、1
B、
3
C、2
D、
3
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C與圓C1:x2+(y-2)2=9和圓C2:x2+(y+2)2=25都外切,則動圓圓心C的軌跡是(  )
A、圓B、橢圓
C、雙曲線D、雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列1,3,7,15,…,則a6等于( 。
A、32B、43C、63D、65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果存在正實數(shù)a,使得f(x-a)為奇函數(shù),f(x+a)為偶函數(shù),我們稱函數(shù)f(x)為“和諧函數(shù)”.給出下列四個函數(shù):
①f(x)=(x-1)5+5
②f(x)=cos2(x-
π
4

③f(x)=sinx+cosx
④f(x)=ln|x+1|
其中“和諧函數(shù)”的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,值域為R的函數(shù)是( 。
A、f(x)=2x
B、f(x)=lg(tanx)
C、f(x)=
1
x
D、f(x)=|lnx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個數(shù)是( 。
①△ABC中,B=60°是△ABC的三內(nèi)角A,B,C成等差數(shù)列的充要條件;
②若“am2<bm2,則a<b”的逆命題為真命題;
③xy≠6是x≠2或y≠3充分不必要條件;
④lgx>lgy是
x
y
的充要條件.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點P在矩形ABCD平面外,AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥平面PAB;
(2)求直線PC與平面ABCD所成的角的大。

查看答案和解析>>

同步練習(xí)冊答案