【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長(zhǎng)為16,△AF1F2的周長(zhǎng)為12.

(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;

(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.

【答案】(1) (2)

【解析】試題分析:

(1)由題意可得關(guān)于的方程組,求解方程組計(jì)算可得:標(biāo)準(zhǔn)方程為,離心率為;

(2)很明顯直線的斜率存在,設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)差法可得CD中點(diǎn)坐標(biāo)為,且,利用點(diǎn)斜式方程可得直線l的一般方程是 .

試題解析:

1)由題知,解得,

橢圓E的標(biāo)準(zhǔn)方程為,離心率.

2)由(1)知,易知直線的斜率存在,設(shè)為,

設(shè),,

是線段CD的中點(diǎn),

故直線的方程為,化為一般形式即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅、舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),其主體造型的平面圖是由兩個(gè)相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計(jì)劃在正方形MNPQ上建一花壇,造價(jià)為4 200元/m2,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)空角上鋪草坪,造價(jià)為80元/m2.

(1)設(shè)總造價(jià)為S元,AD的邊長(zhǎng)為x m,試建立S關(guān)于x的函數(shù)解析式;

(2)計(jì)劃至少要投多少萬(wàn)元才能建造這個(gè)休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).

(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+a|﹣2a,其中a∈R.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x+ ,其中a>0
(Ⅰ)若f(x)在(2,+∞)上存在極值點(diǎn),求a的取值范圍;
(Ⅱ)設(shè)x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,記為M(a).則a≤e+ 時(shí),M(a)是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案