【題目】已知復(fù)數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設(shè)z,z2 , z﹣z2在復(fù)平面對應(yīng)的點分別為A,B,C,求△ABC的面積.
【答案】
(1)解:設(shè)Z=x+yi(x,y∈R)
由題意得Z2=(x﹣y)2=x2﹣y2+2xyi
∴
故(x﹣y)2=0,∴x=y將其代入(2)得2x2=2∴x=±1
故 或
故Z=1+i或Z=﹣1﹣i;
(2)解:當(dāng)Z=1+i時,Z2=2i,Z﹣Z2=1﹣i
所以A(1,1),B(0,2),C(1,﹣1)
∴
當(dāng)Z=﹣1﹣i時,Z2=2i,Z﹣Z2=﹣1﹣3i,A(﹣1,﹣1),B(0,2),C(﹣1,﹣3)
S△ABC= ×1×2=1.
【解析】(1)設(shè)出復(fù)數(shù)的代數(shù)形式的式子,根據(jù)所給的模長和z2的虛部為2.得到關(guān)于復(fù)數(shù)實部和虛部的方程組,解方程組,得到要求的復(fù)數(shù).(2)寫出所給的三個復(fù)數(shù)的表示式,根據(jù)代數(shù)形式的表示式寫出復(fù)數(shù)對應(yīng)的點的坐標(biāo),即得到三角形的三個頂點的坐標(biāo),求出三角形的面積,注意三個點的坐標(biāo)有兩種結(jié)果,不要漏解.
【考點精析】認(rèn)真審題,首先需要了解復(fù)數(shù)的定義(形如的數(shù)叫做復(fù)數(shù),和分別叫它的實部和虛部),還要掌握復(fù)數(shù)的模(絕對值)(復(fù)平面內(nèi)復(fù)數(shù)所對應(yīng)的點到原點的距離,是非負(fù)數(shù),因而兩復(fù)數(shù)的模可以比較大。粡(fù)數(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A,B兩點5條連線并聯(lián),它們在單位時間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b均大于0,且 + =1.求證:對于每個n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)的圖象做怎樣的平移變換可以得到函數(shù)的圖象;
(Ⅲ)若方程在上有兩個不相等的實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,E,F(xiàn)分別是A1B,A1C的中點,點D在B1C1上,A1D⊥B1C.求證:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某普通高中為了了解學(xué)生的視力狀況,隨機抽查了100名高二年級學(xué)生和100名高三年級學(xué)生,對這些學(xué)生配戴眼鏡的度數(shù)(簡稱:近視度數(shù))進(jìn)行統(tǒng)計,得到高二學(xué)生的頻數(shù)分布表和高三學(xué)生頻率分布直方圖如下:
近視度數(shù) | 0﹣100 | 100﹣200 | 200﹣300 | 300﹣400 | 400以上 |
學(xué)生頻數(shù) | 30 | 40 | 20 | 10 | 0 |
將近視程度由低到高分為4個等級:當(dāng)近視度數(shù)在0﹣100時,稱為不近視,記作0;當(dāng)近視度數(shù)在100﹣200時,稱為輕度近視,記作1;當(dāng)近視度數(shù)在200﹣400時,稱為中度近視,記作2;當(dāng)近視度數(shù)在400以上時,稱為高度近視,記作3.
(1)從該校任選1名高二學(xué)生,估計該生近視程度未達(dá)到中度及以上的概率;
(2)設(shè)a=0.0024,從該校任選1名高三學(xué)生,估計該生近視程度達(dá)到中度或中度以上的概率;
(3)把頻率近似地看成概率,用隨機變量X,Y分別表示高二、高三年級學(xué)生的近視程度,若EX=EY,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com