【題目】某大型企業(yè)招聘會(huì)的現(xiàn)場(chǎng),所有應(yīng)聘者的初次面試都由張、王、李三位專(zhuān)家投票決定是否進(jìn)入下一輪測(cè)試,張、王、李三位專(zhuān)家都有“通過(guò)”、“待定”、“淘汰”三類(lèi)票各一張,每個(gè)應(yīng)聘者面試時(shí),張、王、李三位專(zhuān)家必須且只能投一張票,每人投三類(lèi)票中的任意一類(lèi)的概率均為 ,且三人投票相互沒(méi)有影響,若投票結(jié)果中至少有兩張“通過(guò)”票,則該應(yīng)聘者初次面試獲得“通過(guò)”,否則該應(yīng)聘者不能獲得“通過(guò)”.
(1)求應(yīng)聘者甲的投票結(jié)果獲得“通過(guò)”的概率;
(2)記應(yīng)聘者乙的投票結(jié)果所含“通過(guò)”和“待定”票的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.
【答案】
(1)解:應(yīng)聘者甲的投票結(jié)果獲得“通過(guò)”為事件A,
則事件A包含甲獲2張“通過(guò)”票或甲獲3張“通過(guò)”票,
∵張、王、李三位專(zhuān)家必須且只能投一張票,每人投三類(lèi)票中的任意一類(lèi)票的概率為 ,
且三人投票相互沒(méi)有影響,
∴應(yīng)聘者甲最終獲“通過(guò)”的概率為:
P(A)= =
(2)解:應(yīng)聘者乙所獲“通過(guò)”和“待定”票的票數(shù)之和X的所有數(shù)值為0,1,2,3,
則P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
∴EX= =2
【解析】(1)應(yīng)聘者甲的投票結(jié)果獲得“通過(guò)”為事件A,則事件A包含甲獲2張“通過(guò)”票或甲獲3張“通過(guò)”票,張、王、李三位專(zhuān)家必須且只能投一張票,每人投三類(lèi)票中的任意一類(lèi)票的概率為 ,且三人投票相互沒(méi)有影響,由此能求出應(yīng)聘者甲最終獲“通過(guò)”的概率.(2)應(yīng)聘者乙所獲“通過(guò)”和“待定”票的票數(shù)之和X的所有數(shù)值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用離散型隨機(jī)變量及其分布列,掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,(且),數(shù)列滿足:,且(且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為 ,則a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)是同一函數(shù)的是( )
① 與 ;
②f(x)=|x|與 ;
③f(x)=x0與g(x)=1;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.②④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為2的三棱柱ABC﹣A1B1C1中,側(cè)面A1ACC1⊥底面ABC,且∠A1AC= ,點(diǎn)O為AC的中點(diǎn).
(1)求證:AC⊥平面A1OB;
(2)求二面角B1﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論:
①若命題 ,則p:x∈R,x2+x+1≥0;
②“(x﹣3)(x﹣4)=0”是“x﹣3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x﹣m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x﹣m=0沒(méi)有實(shí)數(shù)根,則m≤0”;
④若a>0,b>0,a+b=4,則 的最小值為1.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)所在直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司針對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險(xiǎn)公司把企業(yè)的所有崗位共分為、、三類(lèi)工種,從事三類(lèi)工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類(lèi)工種的賠付頻率如下表(并以此估計(jì)賠付頻率).
對(duì)于、、三類(lèi)工種職工每人每年保費(fèi)分別為元,元,元,出險(xiǎn)后的賠償金額分別為100萬(wàn)元,100萬(wàn)元,50萬(wàn)元,保險(xiǎn)公司在開(kāi)展此項(xiàng)業(yè)務(wù)過(guò)程中的固定支出為每年10萬(wàn)元.
(Ⅰ)若保險(xiǎn)公司要求利潤(rùn)的期望不低于保費(fèi)的20%,試確定保費(fèi)、所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇;
方案1:企業(yè)不與保險(xiǎn)公司合作,企業(yè)自行拿出與保險(xiǎn)提供的等額的賠償金額賠付給出險(xiǎn)職工;
方案2:企業(yè)于保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個(gè)人負(fù)責(zé)保費(fèi)的40%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付.
若企業(yè)選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)、所要滿足的條件,并判斷企業(yè)是否可與保險(xiǎn)公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險(xiǎn)公司所提條件不矛盾,則企業(yè)可與保險(xiǎn)公司合作.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市.
(1)若該人到達(dá)后停留天(到達(dá)當(dāng)日算1天),求此人停留期間空氣質(zhì)量都是重度污染的概率;
(2)若該人到達(dá)后停留3天(到達(dá)當(dāng)日算1天〉,設(shè)是此人停留期間空氣重度污染的天數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com