對于函數(shù)f(x),若存在區(qū)間M=[a,b](a<b),使得 {y|y=f(x).x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列三個函數(shù):①f(x)=x3;②f(x)=cosx;③f(x)=ex.其中存在穩(wěn)定區(qū)間的函數(shù)有    .(寫出所有正確的序號)
【答案】分析:根據(jù)函數(shù)“穩(wěn)定區(qū)間”的定義,即存在區(qū)間M使函數(shù)的定義域與值域均為M.由此對3個函數(shù)逐一加以研究,可得對于函數(shù)f(x)=x3存在M=[-1,1]符合題意;函數(shù)f(x)=cosx存在M=[0,1]符合題意;而函數(shù)f(x)=ex不存在“穩(wěn)定區(qū)間”.
解答:解:對于①,當區(qū)間M=[-1,1]時,
最小值為f(-1)=-1且最小值為f(1)=1,
因此函數(shù)的值域為[-1,1]=M,符合題意;
對于②,f(x)=cosx
∵函數(shù)在(0,1)上是減函數(shù),且f(0)=cos0=1,f(1)=cos=0
∴當區(qū)間M=[0,1]時,可得函數(shù)的值域為=M,可得②符合題意;
對于③,因為f(x)=ex是R上的增函數(shù),
且ex>x恒成立,故不存在區(qū)間M=[a,b]使得當x∈M時值域恰好是M
因此可得③不符合題意.
故答案為:①②
點評:本題給出函數(shù)“穩(wěn)定區(qū)間”的概念,要我們在幾個函數(shù)中找出存在“穩(wěn)定區(qū)間”函數(shù)的個數(shù).著重考查了基本初等函數(shù)的圖象與性質(zhì)、函數(shù)的定義域與值域等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
 
(填出所有滿足條件的函數(shù)序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
x+2
是“科比函數(shù)”,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)
f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
(1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點.若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間,
(2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設(shè)bn=-
1
an
,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習冊答案