已知在四棱柱ABCD-A1B1C1D1中,側(cè)面都是矩形,底面四邊形ABCD是菱形,且AB=BC=2
3
,∠ABC=120°,若異面直線A1B和AD1所成的角是90°,試求AA1
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:連結(jié)CD1,AC,由題意得四邊形A1BCD1是平行四邊形,A1B∥CD1,∠AD1C(或其補(bǔ)角)為A1B和AD1所成的角,由此能求出AA1
解答: 解:連結(jié)CD1,AC,
由題意得四棱柱ABCD-A1B1C1D1中,A1D1=BC,
∴四邊形A1BCD1是平行四邊形,
∴A1B∥CD1
∴∠AD1C(或其補(bǔ)角)為A1B和AD1所成的角,
∵異面直線A1B和AD1所成的角為90°,
∴∠AD1C=90°,
∵四棱柱ABCD-A1B1C1D1中,AB=BC=2
3
,
∠ABC=120°,
∴AC=2
3
sin60°×2=6,
AD1=
2
2
AC=3
2
,
AA1=
AD12-A1D12
=
(3
2
)2-(2
3
)2
=
6
點(diǎn)評(píng):本題考查四棱柱中側(cè)棱長(zhǎng)的求法,是中檔題,解題時(shí)要注意空間能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各數(shù)中最小的數(shù)是( 。
A、85(9)
B、210(6)
C、1000(4)
D、1111111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,2sinA-sinC=cosC•tanB.
(Ⅰ)求角B的大。
(Ⅱ)設(shè)向量
m
=(cosA,cos2A),
n
=(-
12
5
,1),當(dāng)
m
n
取最小值時(shí),求tan(A-B+
π
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+2x+1,若?x∈[1,m],?t∈R使f(x+t)≤x成立.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知角α的終邊經(jīng)過(guò)點(diǎn)p(-3,4),
(1)求sinα和cosα的值;
(2)求tan(α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2ωx-
3
sinωx•cosωx(ω>0)的最小正周期是π,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的 對(duì) 邊 分 別 是a,b,c,若(2a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種商品在50個(gè)不同地區(qū)的零售價(jià)格全部介于13元與18元之間,將各地價(jià)格按如下方式分成五組:第一組[13,14);第二組[14,15),…,第五組[17,18].如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)求價(jià)格在[16,17)內(nèi)的地區(qū)數(shù),并估計(jì)該商品價(jià)格的中位數(shù)(精確到0.1);
(Ⅱ)設(shè)m、n表示某兩個(gè)地區(qū)的零售價(jià)格,且已知m,n∈[13,14)∪[17,18],求事件“|m-n|>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C均在單位圓上,已知點(diǎn)A在第一象限用橫坐標(biāo)是
3
5
,點(diǎn)B在第二象限,點(diǎn)C(1,0).
(1)設(shè)∠COA=θ,求sin2θ的值;
(2)若△AOB為正三角形,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(1-x)+lg(1+x)的定義域?yàn)锳,函數(shù)f(x)=lg(x-1)(x∈[2,11])的值域?yàn)锽.求:A,B,(∁RA)∪B.

查看答案和解析>>

同步練習(xí)冊(cè)答案