(22)

    已知兩定點(diǎn),滿足條件的點(diǎn)的軌跡是曲線,直線與曲線交于兩點(diǎn)

(Ⅰ)求的取值范圍;

(Ⅱ)如果,且曲線上存在點(diǎn),使,求的值和的面積S.

本小題主要考察雙曲線的定義和性質(zhì)、直線與雙曲線的關(guān)系、點(diǎn)到直線的距離等知識以及解析幾何的基本思想、方法和綜合解決問題的能力。

解:(Ⅰ)由雙曲線的定義可知,曲線是以為焦點(diǎn)的雙曲線的左支,

,易知

故曲線的方程為

設(shè),由題意建立方程組

消去,得

又已知直線與雙曲線左支交于兩點(diǎn),有

解得

依題意得

整理后得

   ∴

故直線的方程為

設(shè),由已知,得

,

∴點(diǎn)

將點(diǎn)的坐標(biāo)代入曲線的方程,得

但當(dāng)時(shí),所得的點(diǎn)在雙曲線的右支上,不合題意

, 點(diǎn)的坐標(biāo)為

的距離為

的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)E(-
2
,0),F(xiàn)(
2
,0),動點(diǎn)P滿足
PE
PF
=0,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M滿足
PQ
=
2
MQ
,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離為
2
2
,求|AB|的最大值及對應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)E(-
2
,0),F(xiàn)(
2
,0),動點(diǎn)P滿足
PE
PF
=0,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M滿足
PQ
=
2
MQ
,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離為
2
2
,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)二模)在直角坐標(biāo)系xOy中,已知兩定點(diǎn)A(1,0),B(1,1).動點(diǎn)P(x,y)滿足
0≤
OP
OA
≤1
0≤
OP
OB
≤2.
則點(diǎn)P構(gòu)成的區(qū)域的面積是
2
2
;點(diǎn)Q(x+y,x-y)構(gòu)成的區(qū)域的面積是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動點(diǎn)P(x,y),
(1)求動點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長為定值.

查看答案和解析>>

同步練習(xí)冊答案