當(dāng)-5≤x≤0時(shí),y=x2+4x+3的最大值是________,最小值是_________.

答案:8,-1
解析:

解:因y=x2+4x+3=(x+2)2-1,

∴當(dāng)x=-2時(shí),函數(shù)取最小值-1,又因二次函數(shù)的圖象開口向上,且頂點(diǎn)靠近區(qū)間的右端,所以,當(dāng)x=-5時(shí),取最大值.

最大值是(-5)2+4×(-5)+3=8


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確的個(gè)數(shù)是( 。
①當(dāng)a<0時(shí),a2>a3;
nan
=|a|;
③函數(shù)y=(x-2) 
1
2
-(3x-7)0的定義域是(2,+∞);
④若100a=5,10b=2,則2a+b=1.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x).
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)若曲線y=g(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若當(dāng)x=-1時(shí)函數(shù)y=g(x)取得極值,確定y=g(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x2+
2
x
(x>0)
的最小值,并確定取得最小值時(shí)x的值.列表如下,請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
x 0.25 0.5 0.75 1 1.1 1.2 1.5 2 3 5
y 8.063 4.25 3.229 3 3.028 3.081 3.583 5 9.667 25.4
已知:函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間(0,1)上遞減,問:
(1)函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間
[1,+∞)
[1,+∞)
上遞增.當(dāng)x=
1
1
時(shí),y最小=
3
3

(2)函數(shù)g(x)=9x2+
2
3|x|
在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們?yōu)榱颂骄亢瘮?shù) f(x)=x+
4
x
,x∈(0,+∞)
的部分性質(zhì),先列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請你觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
首先比較容易的看出來:此函數(shù)在區(qū)間(0,2)上是遞減的;
(1)函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當(dāng)x=
2
2
時(shí),y最小=
4
4

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖象;
(3)證明:此函數(shù)在區(qū)間上(0,2)是遞減的.

查看答案和解析>>

同步練習(xí)冊答案