【題目】在如圖所示的幾何體中,四邊形為平行四邊形, 平面,且是的中點.
(1)求證: 平面;
(2)求二面角的余弦值的大小.
【答案】(1)見解析(2)
【解析】試題分析:(1)取AD的中點N,連接MN、NF.由三角形中位線定理,結合已知條件,證出四邊形MNFE為平行四邊形,從而得到EM∥FN,結合線面平行的判定定理,證出EM∥平面ADF;(2)求出平面ADF、平面BDF的一個法向量,利用向量的夾角公式,可求二面角的大小.
解析:
(1)解法一:取的中點,連接.
在中, 是的中點, 是的中點,
所以,又因為,
所以且.
所以四邊形為平行四邊形,所以,
又因為平面平面,故平面.
解法二:因為平面,
故以為原點,建立如圖所示的空間直角坐標系.
由已知可得,
設平面的一個法向量是.
由得
令,則.
又因為,所以,又平面,
故平面.
(2)由(1)可知平面的一個法向量是.
易得平面的一個法向量是
所以,又二面角為銳角,
故二面角的余弦值大小為.
科目:高中數學 來源: 題型:
【題目】某集團為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經調查投入廣告費t(百萬元),可增加銷售額約為-t2+5t(百萬元)(0≤t≤5) (注:收益=銷售額-投放).
(1)若該公司將當年的廣告費控制在3百萬元之內,則應投入多少廣告費,才能使該公司由此獲得的收益最大?
(2)現(xiàn)該公司準備共投入3百萬元,分別用于廣告促銷和技術改造.經預測,每投入技術改造費x(百萬元),可增加的銷售額約為-x3+x2+3x(百萬元).請設計一個資金分配方案,使該公司由此獲得的收益最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學參加2022年杭州亞運會志愿者服務活動,有翻譯、導游、禮儀、司機四項工作可以安排,以下說法正確的是( )
A. 每人都安排一項工作的不同方法數為
B. 每項工作至少有一人參加,則不同的方法數為
C. 如果司機工作不安排,其余三項工作至少安排一人,則這5名同學全部被安排的不同方法數為
D. 每項工作至少有一人參加,甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的個數是( )
(1) 已知,,,則
(2)將6個相同的小球放入4個不同的盒子中,要求不出現(xiàn)空盒,共有10種放法.
(3) 被除后的余數為.
(4) 若,則=
(5)拋擲兩個骰子,取其中一個的點數為點的橫坐標,另一個的點數為點的縱坐標,連續(xù)拋擲這兩個骰子三次,點在圓內的次數的均值為
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在上的函數和數列滿足下列條件:,,當且時,且,其中、均為非零常數.
(1)若是等差數列,求實數的值;
(2)令(),若,求數列的通項公式;
(3)令(),若,數列滿足,若數列有最大值,最小值,且,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題都是真命題,則命題“”為真命題
B. 命題“”的否定是“,”
C. 命題:“若,則或”的否命題為“若,則或”
D. “”是“”的必要不充分條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=4,求平面PBC與平面PDC所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com