y=f(x)(x∈R)是奇函數(shù),則它的圖象必經(jīng)過點(diǎn)( 。
A、(-a,-f(-a))
B、(a,-f(a))
C、(a,f(
1
a
))
D、(-a,-f(a))
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:
分析:根據(jù)y=f(x)(x∈R)是奇函數(shù),可得f(-a)=-f(a),所以則它的圖象必經(jīng)過點(diǎn)(a,f(a))、點(diǎn)(-a,-f(a)),據(jù)此判斷即可.
解答: 解:根據(jù)y=f(x)(x∈R)是奇函數(shù),
可得f(-a)=-f(a),
所以則它的圖象必經(jīng)過點(diǎn)(a,f(a))、點(diǎn)(-a,-f(a)).
故選:D.
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1和F1,點(diǎn)O為雙曲線的中心,點(diǎn)P在雙曲線的右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( 。
A、|OA|>|OB|
B、|OA|=|OB|
C、|OA|<|OB|
D、|OA|與|OB|大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx-ny+2=0(m>0,n>0)被圓x2+y2+2x-4y-4=0截得的弦長(zhǎng)為6,則
2
m
+
1
n
的最小值是( 。
A、
2
+
3
2
B、2
2
+3
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),
n
=(1,2),則向量
m
與向量
n
夾角的余弦值為( 。
A、
5
10
B、
3
2
10
C、
3
5
10
D、
3
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)為10的正方體ABCD-A1B1C1D1中,E、F分別是AD,A1D1的中點(diǎn),長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在線段EF上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面A1B1C1D1上運(yùn)動(dòng),則線段MN的中點(diǎn)P在二面角A-A1D1-B1內(nèi)運(yùn)動(dòng)所形成幾何體的體積為( 。
A、4π
B、
π
3
C、
2
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
y2
16
-
x2
48
=1的離心率e=(  )
A、2
B、
2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:x2=2y的焦點(diǎn)F的直線l交拋物線C于A、B兩點(diǎn),若拋物線C在點(diǎn)B處的切線斜率為1,則線段|AF|=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=S12,公差d<0,求Sn的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若logab•log3a=2,則b的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案