已知函數(shù),,其中且.
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ) 單調(diào)增區(qū)間是,;(II) ;(III)
【解析】
試題分析:(Ⅰ) 為確定函數(shù)的單調(diào)區(qū)間,往往遵循“求導(dǎo)數(shù)、求駐點(diǎn)、分區(qū)間討論導(dǎo)數(shù)的正負(fù)、確定函數(shù)的單調(diào)性”等步驟.
(Ⅱ) 為確定函數(shù)的極值,往往遵循“求導(dǎo)數(shù)、求駐點(diǎn)、分區(qū)間討論導(dǎo)數(shù)的正負(fù)、確定函數(shù)的極值”等步驟.
本小題根據(jù)函數(shù)有極值,建立的方程,求得,從而得到.根據(jù)的圖象可由的圖象向下平移4個(gè)單位長(zhǎng)度得到,而的圖象關(guān)于對(duì)稱,
得到函數(shù)的圖象的對(duì)稱中心坐標(biāo).
(Ⅲ)假設(shè)存在a使在上為減函數(shù),通過(guò)討論導(dǎo)函數(shù)為負(fù)數(shù),得到的不等式,達(dá)到解題目的.
試題解析: (Ⅰ) (Ⅰ) 當(dāng),, 1分
設(shè),即,
所以,或, 2分
單調(diào)增區(qū)間是,; 4分
(Ⅱ)當(dāng)時(shí),函數(shù)有極值,
所以, 5分
且,即, 6分
所以,
的圖象可由的圖象向下平移4個(gè)單位長(zhǎng)度得到,而的圖象關(guān)于對(duì)稱, 7分
所以的圖象的對(duì)稱中心坐標(biāo)為; 8分
(Ⅲ)假設(shè)存在a使在上為減函數(shù),
設(shè),
,
, 9分
設(shè),
當(dāng)在上為減函數(shù),則在上為減函數(shù),在上為減函數(shù),且. 10分
由(Ⅰ)知當(dāng)時(shí),的單調(diào)減區(qū)間是,
由得:,
解得:, 11分
當(dāng)在上為減函數(shù)時(shí),對(duì)于,即恒成立,
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030804522458408041/SYS201403080453032246366932_DA.files/image039.png">,
(1)當(dāng)時(shí),在上是增函數(shù),在是減函數(shù),
所以在上最大值為,
故,
即,或,故; 12分
(2)當(dāng)時(shí),在上是增函數(shù),在是減函數(shù),
所以在上最大值為,
故,則與題設(shè)矛盾; 13分
(3)當(dāng)時(shí),在上是減函數(shù),
所以在上最大值為,
綜上所述,符合條件的a滿足. 14分
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,不等式的解法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),(其中且)。
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性并給出證明;
(Ⅲ)若時(shí),函數(shù)的值域是,求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),,其中且.
(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ) 若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川省瀘州市高三第一次教學(xué)質(zhì)量診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),,其中且.
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年哈爾濱市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本題滿分12分)已知函數(shù)滿足,其中且.
(1)對(duì)于函數(shù),當(dāng)時(shí),,求實(shí)數(shù)的取值集合;
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:東北師大附中2009-2010學(xué)年高一上學(xué)期期末(數(shù)學(xué))試題 題型:解答題
已知函數(shù),(其中且)。
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性并給出證明;
(Ⅲ)若時(shí),函數(shù)的值域是,求實(shí)數(shù)的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com