在△ABC中,∠ACB=90°,∠BAC=30°,AB=4,D、E分別為AB、AC上的點(diǎn),AB⊥DE,沿DE將△ADE折起,使得平面ADE⊥平面BDEC,設(shè)AD=x.
(1)試將四棱錐A-BCED的體積u(x)用x表示出來(lái).
(2)當(dāng)x為何值時(shí),u(x)取最大值.
(3)當(dāng)u(x)取最大值時(shí),求二面角A-CE-B的某一個(gè)三角函數(shù)值.

【答案】分析:(1)由Rt△ADE∽R(shí)t△ACB得,結(jié)合題中數(shù)據(jù)算出,從而得到S△ADE=,結(jié)合S△ABC=2算出,由面面垂直的性質(zhì)定理證出AD⊥平面BDEC,得AD是四棱錐A-BCED的高,再用錐體的體積公式,即可得到四棱錐A-BCED的體積u(x)的表達(dá)式;
(2)根據(jù)(1)中所得的u(x)的表達(dá)式,求導(dǎo)數(shù)得.研究u'(x)的正負(fù),可得u(x)的增區(qū)間是(0,2),減區(qū)間是(2,3),從而得到u(x)最大值為u(2)=;
(3)過點(diǎn)D作DF⊥CE,交CE的延長(zhǎng)線于F,連接AF.根據(jù)AD⊥平面BCDE利用三垂線定理,得AF⊥CE,所以∠AFD就是二面角A-CE-B的平面角.Rt△AFD中,算出DF=DEsin60°=×=1,從而得到tan∠AFD==2,即得二面角A-CE-B的正切值等于2.
解答:解:(1)根據(jù)題意,得Rt△ADE∽R(shí)t△ACB,
,結(jié)合Rt△ACB中,AC=4cos30°=2,BC=4sin30°=2
代入得,解得,
由此可得S△ADE=×AD×DE=,而S△ABC=×AC×BC=ABcos30°×ABsin30°=2

∵平面ADE⊥平面BDEC,平面ADE∩平面BDEC=DE,AD?平面ADE且AD⊥DE
∴AD⊥平面BDEC,AD是四棱錐A-BCED的高線,
因此四棱錐A-BCED的體積V=
即u(x)=
(2)由(1)得,
令u′(x)>0,得x∈(0,2);令u′(x)<0,得x∈(2,3)
∴u(x)的增區(qū)間是(0,2),減區(qū)間是(2,3),因此函數(shù)u(x)的最大值;
(3)由(2)得當(dāng)u(x)取最大值時(shí),AD=x=2
過點(diǎn)D作DF⊥CE,交CE的延長(zhǎng)線于F,連接AF
∵AD⊥平面BCDE,可得DF是AF在平面BCDE內(nèi)的射影
∴由三垂線定理,可得AF⊥CE,
因此,∠AFD就是二面角A-CE-B的平面角
∵△DEF中,∠DEF=90°-30°=60°,DE==
∴DF=DEsin60°=×=1
由此可得Rt△AFD中,tan∠AFD==2
即二面角A-CE-B的正切值等于2.
點(diǎn)評(píng):本題給出平面圖形的折疊問題,求四棱錐A-BCED的體積的最大值,并求此時(shí)二面角A-CE-B的一個(gè)三角函數(shù)值,著重考查了解直角三角形、相似三角形、面面垂直的性質(zhì)定理、錐體的體積公式和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,BC=1,cosC=
34

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AC=
3
,∠A=45°,∠C=75°,則BC的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=BC,AB=2,O為AB的中點(diǎn),沿OC將△AOC折起到△A′OC的位置,使得直線A′B與平面ABC成30°角.
(1)若點(diǎn)A′到直線BC的距離為l,求二面角A′-BC-A的大;
(2)若∠A′CB+∠OCB=π,求BC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AC=2,BC=1,sinC=
35
,則AB的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于平面直角坐標(biāo)系內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,||AC||+||CB||>||AB||;
③在△ABC中,若∠A=90°,則||AB||2+||AC||2=||BC||2
其中錯(cuò)誤的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案