如圖,四棱錐P-ABCD的底面是菱形,PA⊥底面ABCD,E是PD的中點(diǎn);
(Ⅰ)求證:PB∥平面ACE;    
(Ⅱ)求證:BD⊥PC.
分析:(Ⅰ)取AC與BD的交點(diǎn)為O,連EO,利用EO為三角形PBD的中位線和線面平行的判定定理即可證得PB∥平面ACE;
(Ⅱ)易證BD⊥平面PAC,利用直線與平面垂直的性質(zhì)即可證得BD⊥PC.
解答:證明:(Ⅰ)∵底面ABCD是菱形,取AC與BD的交點(diǎn)為O,又E是PD的中點(diǎn),連EO,

則EO
.
1
2
PB,
又EO?平面ACE,PB?平面ACE,
∴PB∥平面ACE;
(Ⅱ)∵PA⊥底面ABCD,BD?底面ABCD,
∴PA⊥BD;①
又底面ABCD是菱形,
∴AC⊥BD;②
PA∩AC=A,
∴BD⊥平面PAC,PC?平面PAC,
∴BD⊥PC.
點(diǎn)評:本題考查直線與平面平行的判定,考查直線與平面垂直的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大;當(dāng)平面ABCD內(nèi)有一個動點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案