已知函數(shù).
(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性;(3)求證:﹥0.
科目:高中數(shù)學 來源: 題型:解答題
(2011•山東)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且l≥2r.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設該容器的建造費用為y千元.
(1)寫出y關于r的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的r.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時高度的8倍;
(2)該樹木在栽種后哪一年的增長高度最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關于的函數(shù)關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)的定義域為E,值域為F.
(1)若E={1,2},判斷實數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關系;
(2)若E={1,2,a},F(xiàn)={0,},求實數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點之間的距離為.
(1)求m和a的值;
(2)若點A(x0,y0)是y=f(x)圖象的對稱中心,且x0∈,求點A的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點,且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當x∈[2,4]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2014)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com