已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與x軸的相鄰兩個交點之間的距離為
π
2
,且圖象上一個最高點為Q(
π
6
,2)
(Ⅰ)求f(x)的解析式;
(Ⅱ)當x∈[
π
12
,
π
2
],求f(x)的值域.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質
分析:(Ⅰ)函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由特殊點的坐標求出φ的值,可得函數(shù)的解析式.
(Ⅱ)當x∈[
π
12
,
π
2
],利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)的值域.
解答: 解:(Ⅰ)由最高點為Q(
π
6
,2),可得A=2.
由x軸上相鄰的兩個交點之間的距離為
π
2
,可得T=
ω
=2×
π
2
,解得ω=2.
由點Q(
π
6
,2)在函數(shù)的圖象上,可得2sin(2×
π
6
+φ)=2,即 sin(φ+
π
3
)=1.
再根據(jù)0<φ<
π
2
,可得 φ=
π
6
,∴函數(shù)f(x)=2sin(2x+
π
6
).
(Ⅱ)當x∈[
π
12
,
π
2
],2x+
π
6
∈[
π
3
,
6
],
當2x+
π
6
=
π
2
,即x=
π
6
時,f(x)取得最大值2;當2x+
π
6
=
6
,即x=
π
2
時,f(x)取得最小值為-1,
故f(x)的值域為[-1,2].
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的定義域和值域,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(3,1),
b
=(x,-1),且
a
b
,則x等于( 。
A、
1
3
B、-
1
3
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值域:已知f(x)=2x+2-3•4x(-1<x<0)
(2)函數(shù)y=a2x+2ax-1(a>0,a≠1)在區(qū)間[-1,1]上有最大值14,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)判斷函數(shù)y=x+
x-1
的單調性(不必證明),并求x∈[1,2]時,y的取值范圍;
(2)證明:函數(shù)f(x)=x-
x-1
在區(qū)間[2,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)先后拋擲一枚硬幣四次,求兩次正面朝上的概率;
(2)在區(qū)間(0,3)中隨機地取出兩個數(shù)a、b,求點(a,b)在圓x2+y2=4內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一隧道的截面是一個半橢圓面(如圖所示),要保證車輛正常通行,車頂離隧道頂部至少要有0.5米的距離,現(xiàn)有一貨車,車寬4米,車高2.5米.
(1)若此隧道為單向通行,經(jīng)測量隧道的跨度是10米,則應如何設計
隧道才能保證此貨車正常通行?
(2)圓可以看作是長軸短軸相等的特殊橢圓,類比圓面積公式,請你推測橢圓
x2
a2
+
y2
b2
=1(a>b>0)的面積公式.并問,當隧道為雙向通行(車道間的距離忽略不記)時,要使此貨車安全通過,應如何設計隧道,才會使同等隧道長度下開鑿的土方量最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
3
5
,sin(α-β)=-
4
5
,(0≤α≤
π
2
,0≤β≤
π
2
),求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設G為△ABO的重心,過G的直線與邊OA、OB分別交于P和Q,已知
OP
=x
OA
,
OQ
=y
OB
,△OAB與△OPQ的面積分別為S和T.
(1)求函數(shù)y=f(x)的解析式;
(2)求
T
S
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,E為棱CC1的中點求證:
(1)B1D1⊥AE
(2)AC∥平面B1DE.

查看答案和解析>>

同步練習冊答案