在△ABC中,∠BAC=90°,D是BC中點(diǎn),AB=4,AC=3,則=( )
A.-7
B.
C.
D.7
【答案】分析:在△ABC中,由∠BAC=90°,D是BC中點(diǎn),AB=4,AC=3,知BC==5,AD=5,故cos<>=cos∠ADB=-,由此能求出
解答:解:在△ABC中,∵∠BAC=90°,D是BC中點(diǎn),AB=4,AC=3,
∴BC==5,AD=5,
cos<>=cos∠ADB===-,
=||•||•cos<>==-
故選B.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的性質(zhì)和應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意余弦定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,|
BA
|=|
BC
|
,延長(zhǎng)CB到D,使
AC
AD
,若
AD
AB
AC
,則λ-μ的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
,
3
3
2
]
,則∠B的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
(1)若函數(shù)f(x)=lg(x+
x2+a
),為奇函數(shù),則a=1;
(2)函數(shù)f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),則
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過(guò)△ABC的內(nèi)心.
以上命題為真命題的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中
a+b
a-b
等于(  )
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
,
3
3
2
]
,則∠B的取值范圍是( 。
A.[
π
4
π
3
]
B.[
π
6
,
π
4
]
C.[
π
6
,
π
3
]
D.[
π
3
,
π
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案