7.已知△ABC中,角A、B、C的對(duì)邊分別是a、b、c,若$\frac{a}{sinB}$+$\frac{sinA}$=2c,則△ABC是( 。
A.等邊三角形B.銳角三角形C.等腰直角三角形D.鈍角三角形

分析 由已知及正弦定理可得:$\frac{sinA}{sinB}+\frac{sinB}{sinA}=2sinC$,而$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2$\sqrt{\frac{sinA}{sinB}•\frac{sinB}{sinA}}$=2,當(dāng)且僅當(dāng)sinA=sinB時(shí)取等號(hào),即2sinC≥2,解得∠C=90°,A=B,從而得解.

解答 解:∵$\frac{a}{sinB}$+$\frac{sinA}$=2c,
∴由正弦定理可得:$\frac{sinA}{sinB}+\frac{sinB}{sinA}=2sinC$,而$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2$\sqrt{\frac{sinA}{sinB}•\frac{sinB}{sinA}}$=2,當(dāng)且僅當(dāng)sinA=sinB時(shí)取等號(hào).
∴2sinC≥2,即sinC≥1,又sinC≤1,故可得:sinC=1,
∴∠C=90°.
又∵sinA=sinB,可得A=B,
故三角形為等腰直角三角形.
故選:C.

點(diǎn)評(píng) 本題主要考查了正弦定理,基本不等式的解法,正弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若B=$\frac{π}{3}$,且(sinA-sinB+sinC)(sinA+sinB-sinC)=$\frac{3}{7}$sinBsinC.
(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,BC邊上的高與BC邊的長(zhǎng)相等,則$\frac{A{B}^{2}+A{C}^{2}+B{C}^{2}}{AB•AC}$的最大值為( 。
A.2B.2$\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>b>0,c<d<0,e<0,求證:$\frac{e}{(a-c)^{2}}$>$\frac{e}{(b-d)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=x2-4x,求f(x+2)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)在[1,2]上的最大值等于3a,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$都與$\overrightarrow{c}$垂直,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=$\sqrt{5}$,又$\overrightarrow{u}$=$\overrightarrow{a}$+$\overrightarrow{c}$,$\overrightarrow{v}$=$\overrightarrow$-$\overrightarrow{c}$,試求:
(1)|$\overrightarrow{u}$|,|$\overrightarrow{v}$|;
(2)∠($\overrightarrow{u}$,$\overrightarrow{v}$);
(3)向量$\overrightarrow{u}$在向量$\overrightarrow{v}$上的射影射影${\;}_{\overrightarrow{v}}$$\overrightarrow{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,則滿足f(a-1)=f(a2-2a-1)的實(shí)數(shù)a構(gòu)成的集合是{-2,0,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{1}{\sqrt{9-{x}^{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|-3≤x≤3}B.{x|-3<x<3}C.{x|-3≤x<3}D.{x|-3<x≤3}

查看答案和解析>>

同步練習(xí)冊(cè)答案