已知變量x,y滿足約束條件
x+y-1≤0
x≥0
y≥-1
,則目標(biāo)函數(shù)Z=x+2y的取值范圍是( 。
A、[-2,0]
B、[0,+∞]
C、[0,2]
D、[-2,2]
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,代入最優(yōu)解的坐標(biāo)得答案.
解答: 解:由約束條件
x+y-1≤0
x≥0
y≥-1
作出可行域如圖,

化Z=x+2y為y=-
x
2
+
Z
2
,
由圖可知,當(dāng)直線y=-
x
2
+
Z
2
過A(0,-1)時,直線在y軸上的截距最小,z最小為-2;
當(dāng)直線y=-
x
2
+
Z
2
過C(0,1)時,直線在y軸上的截距最大,z最大為2.
∴目標(biāo)函數(shù)Z=x+2y的取值范圍是[-2,2].
故選:D.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一顆均勻的正方體骰子(它的6個面分別標(biāo)有點數(shù)1,2,3,4,5,6)連續(xù)投擲兩次,記骰子朝上的點數(shù)分別為m,n.已知向量
p
=(m,n),
q
=(-6,3),則向量
p
q
垂直的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
-
2
x2
n(n∈N*)的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10:1.
(1)求展開式中各項系數(shù)的和;
(2)求展開式中含x-1的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a+b=10.c=4,∠C=60°則S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),并且在(-∞,0)上是增函數(shù),已知x1<0,x2>0,且|x1|<|x2|,那么f(-x1)與f(-x2)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x-1)=x2-2x+3,求f(x+1)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合S={1,2,3,…,30}的12元子集T={a1,a2,…,a12}中,恰有兩個元素的差的絕對值等于1,這樣的12元子集T的個數(shù)為( 。
A、C176C111
B、C198C11A1111
C、C1711C111
D、C1911C111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y是正數(shù),且滿足xy(x+y+1)=4,則(x+y)(x+1)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:任意三角形的三個內(nèi)角中至少有一個不大于60°,則命題p的否定是:
 

查看答案和解析>>

同步練習(xí)冊答案