利用信息技術作出函數(shù)的圖象,并指出下列函數(shù)零點所在的大致區(qū)間:f(x)=-x3-3x+5.
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質及應用
分析:由題意知,函數(shù)f(x)是單調函數(shù),根據(jù) f(1)>0,f(2)<0知,函數(shù)f(x)的零點必在區(qū)間(1,2)上.
解答: 解:∵函數(shù)f(x)=-x3-3x+5的圖象如下圖所示:

∵函數(shù)f(x)=-x3-3x+5是單調遞減函數(shù),
又∵f(1)=-13-3×1+5=1>0,f(2)=-23-3×2+5=-9<0,
∴函數(shù)f(x)的零點必在區(qū)間(1,2)上,
故必存在零點的區(qū)間是 (1,2)
點評:本題考查函數(shù)的零點存在的條件:單調的連續(xù)函數(shù)若在一個區(qū)間的端點的函數(shù)值異號,則函數(shù)在此區(qū)間上一定存在零點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sinA+cosA=
1
5
,則△ABC為
 
三角形(在“銳角”、“直角”、“鈍角”中,選擇恰當?shù)囊环N填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函數(shù)f(x)=
a
b

(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應x的值;
(3)若f(θ)=
8
5
,求cos2(
π
4
-2θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導函數(shù)f′(x)<
1
3
,則f(x)<
x
3
+
2
3
的解集為( 。
A、{x|-1<x<1}
B、{x|<-1}
C、{x|x<-1或x>1}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一直線上有一點在已知平面外,則下列結論中正確的是( 。
A、直線與平面平行
B、直線與平面相交
C、直線上至少有一個點在平面內
D、直線上有無數(shù)多個點都在平面外

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠對一批產(chǎn)品的質量進行了抽樣檢測,右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖.已知樣本中產(chǎn)品凈重在[70,75)克的個數(shù)是8個.
(Ⅰ)求樣本容量;
(Ⅱ)若從凈重在[60,70)克的產(chǎn)品中任意抽取2個,求抽出的2個產(chǎn)品恰好是凈重在[65,70)的產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
x2
(1)求函數(shù)f(x)的極值;
(2)若關于x的方程f(x)+2bx=0在區(qū)間(0,e]上恰有兩個不同的實根,求實數(shù)b的最大值;
(3)若對任意x∈[
1
e
,1],不等式|a-2lnx|+ln[f′(x)+x]>0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-2,0),B(1,0),平面內的動點P滿足|PA|=2|PB|.
(1)求點P的軌跡E的方程,并指出其表示的曲線的形狀;
(2)求曲線E關于直線l:x+y-m=0對稱的曲線E′的方程;
(3)是否存在實數(shù)m,使直線l:x+y-m=0與曲線E′交于P、Q兩點,且以PQ為直徑的圓經(jīng)過坐標原點O?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,O(0,0),P(3,4),將向量
OP
繞點O按逆時針旋轉
π
4
后得到向量
OQ
,則點Q的坐標是
 

查看答案和解析>>

同步練習冊答案