已知函數(shù)f(x)在區(qū)間(-∞,+∞)上是增函數(shù),a,b∈R.
(1)求證:若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否正確,并證明你的結(jié)論.
(1)見解析
(2)逆命題是真命題,見解析
【解析】【解析】
(1)由a+b≥0,得a≥-b.
由函數(shù)f(x)在區(qū)間(-∞,+∞)上是增函數(shù),得f(a)≥f(-b),同理,f(b)≥f(-a),
所以f(a)+f(b)≥f(-b)+f(-a),即f(a)+f(b)≥f(-a)+f(-b).
(2)對于(1)中命題的逆命題是:若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0,此逆命題為真命題.
現(xiàn)用反證法證明如下:
假設(shè)a+b≥0不成立,則a+b<0,a<-b,b<-a,
根據(jù)f(x)的單調(diào)性,得f(a)<f(-b),f(b)<f(-a),f(a)+f(b)<f(-a)+f(-b),
這與已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,故a+b<0不成立,
即a+b≥0成立,因此(1)中命題的逆命題是真命題.
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題
在一個幾何體的三視圖中,正視圖和俯視圖如圖所示,則相應(yīng)的側(cè)視圖可以為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):3-1任意角弧度制及任意角的三角函數(shù)(解析版) 題型:選擇題
若α是第三象限角,則y=+的值為( )
A.0 B.2 C.-2 D.2或-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-3簡單的邏輯聯(lián)結(jié)詞全稱量詞與存在量詞(解析版) 題型:選擇題
已知命題p:?x∈R,x2+1<2x;命題q:若mx2-mx-1<0恒成立,則-4<m≤0,那么( )
A.“p”是假命題 B.“q”是真命題
C.“p∧q”為真命題 D.“p∨q”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:填空題
集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分條件,則實數(shù)b的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:選擇題
設(shè)a,b為實數(shù),則“0<ab<1”是“b<”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-4算法初步(解析版) 題型:選擇題
[2014·福州質(zhì)檢]讀程序回答問題:
對甲、乙兩程序和輸出結(jié)果判斷正確的是( )
A.程序不同,結(jié)果不同 B.程序不同,結(jié)果相同
C.程序相同,結(jié)果不同 D.程序相同,結(jié)果相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-1隨機(jī)抽樣(解析版) 題型:選擇題
[2014·日照模擬]為保證某個重大事件的順利進(jìn)行,將從四個部隊中選一個擔(dān)任安全保衛(wèi)工作,為了解四個部隊的“安!蹦芰,則下列抽取人數(shù)的方法中最好的是( )
A.抽簽法 B.隨機(jī)數(shù)表法
C.系統(tǒng)抽樣法 D.分層抽樣法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題
[2014·蘇州調(diào)研]經(jīng)過P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點,則直線l的斜率k和傾斜角α的取值范圍分別為________,________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com