在直角坐標(biāo)系xOy中,是過定點(diǎn)P(4,2)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線C的極坐標(biāo)方程為
(I)寫出直線的參數(shù)方程;并將曲線C的方程化為直角坐標(biāo)方程;
( II)若曲線C與直線相交于不同的兩點(diǎn)M、N,求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列滿足,且,為的前項(xiàng)和.
(Ⅰ)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)如果對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知異面直線a,b所成的角為θ,P為空間任意一點(diǎn),過P作直線l,若l與a,b所成的角均為,有以下命題:
①若θ= 60°,= 90°,則滿足條件的直線l有且僅有l(wèi)條;
②若θ= 60°,=30°,則滿足條件的直線l有僅有l(wèi)條;
③若θ= 60°,= 70°,則滿足條件的直線l有且僅有4條;
④若θ= 60°,= 45°,則滿足條件的直線l有且僅有2條;
上述4個(gè)命題中真命題有
A.l個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在數(shù)學(xué)趣味知識(shí)培訓(xùn)活動(dòng)中,甲、乙兩名學(xué)生的6次培訓(xùn)成績(jī)?nèi)缦虑o葉圖所示:
(Ⅰ)從甲、乙兩人中選擇1人參加數(shù)學(xué)趣味知識(shí)競(jìng)賽,你會(huì)選哪位?請(qǐng)運(yùn)用統(tǒng)計(jì)學(xué)的知識(shí)說明理由:
(II)從乙的6次培訓(xùn)成績(jī)中隨機(jī)選擇2個(gè),試求選到123分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
以下四個(gè)命題中
①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若點(diǎn)共面,點(diǎn)共面,則點(diǎn)共面;
③若直線共面,直線共面,則直線共面;
④依次首尾相接的四條線段必共面. 命題正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知A,B,C,D是函數(shù)一個(gè)周期內(nèi)的圖象上的四個(gè)點(diǎn),如圖所示,B為軸上的點(diǎn),C為圖像上的最低點(diǎn),E為該函數(shù)圖像的一個(gè)對(duì)稱中心,B與D關(guān)于點(diǎn)E對(duì)稱,在軸上的投影為,則的值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com