【答案】
分析:根據(jù)題意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0可得2f(x)=2f(x)f(0),進(jìn)而分析可得f(0)=1,依次分析4個(gè)命題,對(duì)于①、令x=y=
,可得f(t)+f(0)=2f(
)
2,易得f(
)
2=±
,故①錯(cuò)誤,對(duì)于②、令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),分析可得f(y)+f(-y)=0不恒成立,f(x)不是奇函數(shù),故②錯(cuò)誤,對(duì)于③、令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,可得f(x+t)=-f(x-t),進(jìn)而可得f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),可以判斷③正確,對(duì)于④、根據(jù)題意,無法判斷f(x)的單調(diào)性,則④錯(cuò)誤;綜合可得答案.
解答:解:根據(jù)題意,在f(x+y)+f(x-y)=2f(x)f(y)中,
令y=0可得,2f(x)=2f(x)f(0),又由f(x)不是常函數(shù),即f(x)=0不恒成立,則f(0)=1,
依次分析4個(gè)命題可得:
對(duì)于①、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=y=
,可得f(t)+f(0)=2f(
)
2,
結(jié)合f(0)=1,f(t)=0,可得f(
)
2=
,則可得f(
)
2=±
,故①錯(cuò)誤,
對(duì)于②、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),f(y)+f(-y)=0不恒成立,f(x)不是奇函數(shù),故②錯(cuò)誤,
對(duì)于③、在f(x+y)+f(x-y)=2f(x)f(y)中,令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,
即f(x+t)=-f(x-t),則f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),則f(x)是周期函數(shù)且一個(gè)周期為4t,③正確,
對(duì)于④、根據(jù)題意,無法判斷f(x)的單調(diào)性,則④錯(cuò)誤;
故答案為③.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,關(guān)鍵是根據(jù)題意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0,求出f(0)的值,注意f(x)不是常函數(shù),應(yīng)該把f(0)=0舍去.