【題目】2017年12月,針對國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅戰(zhàn).某研究人員為了了解天然氣的需求狀況,對該地區(qū)某些年份天然氣需求量進行了統(tǒng)計,并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測2018年該地區(qū)的天然氣需求量;

(Ⅱ)政府部門為節(jié)約能源出臺了《購置新能源汽車補貼方案》,該方案對新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補貼金額劃分為三類,A類:每車補貼1萬元,B類:每車補貼2.5萬元,C類:每車補貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補貼情況進行了統(tǒng)計,結(jié)果如下表:

為了制定更合理的補貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進一步跟蹤調(diào)查,求恰好有1輛車享受3.4萬元補貼的概率.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)數(shù)據(jù)計算樣本中心值,代入方程得到代入方程可得千萬立方米;(2)根據(jù)古典概型的計算,列舉出基本事件個數(shù),從中找到符合條件的事件個數(shù),兩式作比即可.

解析:

(Ⅰ)如折線圖數(shù)據(jù)可知

代入線性回歸方程可得.

代入方程可得千萬立方米.

(Ⅱ)根據(jù)分層抽樣可知類,類,類抽取人數(shù)分別為1輛,2輛,3輛

分別編號為,,,.基本事件有

共15種

設(shè)“恰好有1輛車享受3.4萬元補貼”為事件,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于xR,都有f(x+4)=f(x)+f(2)成立,當(dāng)x1,x2[0,2]且x1≠x2時,都有 給出下列四個命題:

①f(﹣2)=0;

直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸;

函數(shù)y=f(x)在[4,6]上為減函數(shù);

函數(shù)y=f(x)在(﹣8,6]上有四個零點.

其中所有正確命題的序號為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上的點到橢圓一個焦點的距離的最大值是最小值的倍,且點在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點任作一條直線,與橢圓交于不同于點的兩點,與直線交于點,記直線、、的斜率分別為、.試探究的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年12月,針對國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅戰(zhàn).某研究人員為了了解天然氣的需求狀況,對該地區(qū)某些年份天然氣需求量進行了統(tǒng)計,并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需示量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測2018年該地區(qū)的天然氣需求量;

(Ⅱ)政府部門為節(jié)約能源出臺了《購置新能源汽車補貼方案》,該方案對新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補貼金額劃分為三類,A類:每車補貼1萬元,B類:每車補貼2.5萬元,C類:每車補貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補貼情況進行了統(tǒng)計,結(jié)果如下表:

類型

車輛數(shù)目

10

20

30

為了制定更合理的補貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進一步跟蹤調(diào)查.若抽取的2輛車享受的補貼金額之和記為“”,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

)函數(shù)的圖象能否與軸相切?若能,求出實數(shù)a,若不能,請說明理由;

)求最大的整數(shù),使得對任意,不等式

恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在x=0處的切線方程為y=bx.(e≈2.718 28)

(1)求函數(shù)f(x)的解析式;

(2)當(dāng)x∈R,求證:f(x)≥-x2+x;

(3)f(x)>kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形, , 為棱的中點,且.

(Ⅰ)求證:平面平面

(Ⅱ)當(dāng)直線與底面角時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐標(biāo)系中曲線的極坐標(biāo)方程為:,以極點為坐標(biāo)原點,以極軸為軸的正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為:(為參數(shù)),點.

(1)求出曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)設(shè)曲線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點

(1)關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

(2)證明:;

(3)這兩個函數(shù)的所有極值之和不小于,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案