4.以下莖葉圖記錄了某賽季甲、乙兩名籃球運(yùn)動(dòng)員參加11場(chǎng)比賽的得分(單位:分)若甲運(yùn)動(dòng)員的中位數(shù)為a,乙運(yùn)動(dòng)員的眾數(shù)為b,則a-b的值是8.

分析 根據(jù)莖葉圖,結(jié)合中位數(shù)和眾數(shù)的定義進(jìn)行求解即可.

解答 解:甲運(yùn)動(dòng)員的中位數(shù)為19,即a=19,
乙運(yùn)動(dòng)員的眾數(shù)為b=11,
則a-b=19-11=8,
故答案為:8;

點(diǎn)評(píng) 本題考查中位數(shù),對(duì)于一組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)分別表示一組數(shù)據(jù)的特征,這樣的問(wèn)題可以出現(xiàn)在選擇題或填空題,考查最基本的知識(shí)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.春運(yùn)期間旅客增多,鐵路局?jǐn)M在深圳開(kāi)往鄭州的10輛列車(chē)基礎(chǔ)上增加2輛臨時(shí)列車(chē),則不同的添加方法共有132種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知集合A={x|x2-x≤0},B={x|f(x)=lg(1-|x|)},則A∩B=[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示,一個(gè)圓形靶子的中心是一個(gè)“心形”圖案,其中“心形”圖案是由上邊界C1(虛線L上方部分)與下邊界C2(虛線L下方部分)圍成,曲線C1是函數(shù)y=$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{4}{5}}$ 的圖象,曲線C2是函數(shù)y=-$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{2}{7}}$ 的圖象,圓的方程為x2+y2=8,某人向靶子射出一箭(假設(shè)此人此箭一定能射中靶子且射中靶中任何一點(diǎn)是等可能的),則此箭恰好命中“心形”圖案的概率為( 。
A.$\frac{1}{4}$-$\frac{1}{18π}$B.$\frac{1}{16}$-$\frac{1}{18π}$C.$\frac{1}{8}$+$\frac{1}{18π}$D.$\frac{1}{8}$+$\frac{36}{35π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知F1、F2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),A1、A2分別為其左、右頂點(diǎn),過(guò)F2且與x軸垂直的直線l與橢圓相交于M、N兩點(diǎn).若四邊形A1MA2N的面積等于2,且滿(mǎn)足|$\overrightarrow{{A}_{1}{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{MN}$|+|$\overrightarrow{{A}_{2}{F}_{2}}$|.
(1)求此橢圓的方程;
(2)設(shè)⊙O的直徑為F1F2,直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)P、Q,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=λ,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],求△POQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知復(fù)數(shù)z=$\frac{2-2i}{1+i}$,則z的共軛復(fù)數(shù)的虛部等于( 。
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,結(jié)果是( 。
A.$\frac{65}{81}$B.$\frac{19}{27}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,若角α的始邊為x軸的非負(fù)半軸,終邊為射線l:y=2$\sqrt{2}$x(x≥0).
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)若點(diǎn)P,Q分別是角α始邊、終邊上的動(dòng)點(diǎn),且PQ=4,求△POQ面積最大時(shí),點(diǎn)P,Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某高中共派出足球、排球、籃球三個(gè)球隊(duì)參加市學(xué)校運(yùn)動(dòng)會(huì),它們獲得冠軍的概率分別為$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$.
(1)求該高中獲得冠軍個(gè)數(shù)X的分布列;
(2)若球隊(duì)獲得冠軍,則給其所在學(xué)校加5分,否則加2分,求該高中得分η的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案