科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
5 |
7 |
5 |
7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
2 |
y2 |
4 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年湖南卷理)(14分)
已知橢圓C:+=1(a>b>0)的左.右焦點為F1、F2,離心率為e. 直線
l:y=ex+a與x軸.y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關(guān)于直線l的對稱點,設(shè)=λ.
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年銀川一中三模理)(12分) 已知橢圓C:(a>b>0),點F1、F2分別是橢圓的左、右焦點,點P(2,)在直線x=上,且|F1F2|=|PF2|,直線:y=kx+m為動直線,且直線與橢圓C交于不同的兩點A、B。
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q,滿足(O為坐標原點),求實數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當取何值時,△ABO的面積最大,并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年寶山區(qū)模擬理 ) (18分)已知橢圓C:(a>b>0)的一個焦點到長軸的兩個端點的距離分別為。
(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com