分析 由題意利用定積分的幾何意義求得a的值,二項(xiàng)式展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于2,求得r的值,可得展開(kāi)式中x2的系數(shù).
解答 解:D=2×1=2,s=${∫}_{-1}^{1}$x2dx=$\frac{1}{3}$x3${|}_{-1}^{1}$=$\frac{2}{3}$,a=$\frac{s}{D}$=$\frac{\frac{2}{3}}{2}$=$\frac{1}{3}$,
故二項(xiàng)式($\frac{x}{a}$-$\frac{1}{\sqrt{x}}$)5=(3x-$\frac{1}{\sqrt{x}}$)5的通項(xiàng)公式為T(mén)r+1=${C}_{5}^{r}$•(-1)r•35-r•${x}^{5-\frac{3}{2}r}$,
令5-$\frac{3r}{2}$=2,求得r=2,故二項(xiàng)式($\frac{x}{a}$-$\frac{1}{\sqrt{x}}$)5的展開(kāi)式中x2的系數(shù)為${C}_{5}^{2}$•33=270,
故答案為:270.
點(diǎn)評(píng) 本題主要考查定積分的幾何意義,二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{8}{9}$,1) | B. | [$\frac{8}{9}$,+∞) | C. | [2,+∞) | D. | [$\frac{8}{9}$,1)∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z) | B. | $[\frac{π}{3}+2kπ,\frac{5π}{6}+2kπ](k∈Z)$ | ||
C. | [-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z) | D. | $[\frac{π}{3}+kπ,\frac{5π}{6}+kπ](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com