已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)?x1,x2∈R,且x1<x2,f(x1)≠f(x2),試證明?x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]
成立.
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件①對(duì)?x∈R,f(x-4)=f(2-x),且f(x)≥0;②對(duì)?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
.若存在,求出a,b,c的值,若不存在,請(qǐng)說(shuō)明理由.
分析:(1)將x=-1代入得到關(guān)于a、b、c的關(guān)系式,再由△確定零點(diǎn)個(gè)數(shù).
(2)令g(x)=f(x)-
1
2
[f(x1)+f(x2)]
,再由函數(shù)零點(diǎn)的判定定理可證.
(3)假設(shè)存在a,b,c∈R使得條件成立,由①可知函數(shù)f(x)的對(duì)稱軸是x=-1,且最小值為0,由此可知a=c;由②知將x=1代入可求的a=c=
1
4
,b=
1
2
,最后驗(yàn)證即可.
解答:解析:(1)∵f(-1)=0,
∴a-b+c=0,b=a+c
∵△=b2-4ac=(a+c)2-4ac=(a-c)2
當(dāng)a=c時(shí)△=0,函數(shù)f(x)有一個(gè)零點(diǎn);
當(dāng)a≠c時(shí),△>0,函數(shù)f(x)有兩個(gè)零點(diǎn).
(2)令g(x)=f(x)-
1
2
[f(x1)+f(x2)]
,則g(x1)=f(x1)-
1
2
[f(x1)+f(x2)]=
f(x1)-f(x2)
2
g(x2)=f(x2)-
1
2
[f(x1)+f(x2)]=
f(x2)-f(x1)
2

g(x1)•g(x2)=-
1
4
[f(x1)-f(x2)]2<0,(∵f(x1)≠f(x2))

∴g(x)=0在(x1,x2)內(nèi)必有一個(gè)實(shí)根.即?x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]
成立.
(3)假設(shè)a,b,c存在,由①知拋物線的對(duì)稱軸為x=-1,且f(x)min=0
-
b
2a
=-1,
4ac-b2
4a
=0
?b=2a,b2=4ac?4a2=4ac?a=c
由②知對(duì)?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2

令x=1得0≤f(1)-1≤0?f(1)-1=0?f(1)=1?a+b+c=1
a+b+c=1
b=2a
a=c
a=c=
1
4
,b=
1
2
,
當(dāng)a=c=
1
4
,b=
1
2
時(shí),f(x)=
1
4
x2+
1
2
x+
1
4
=
1
4
(x+1)2
,其頂點(diǎn)為(-1,0)滿足條件①,又f(x)-x=
1
4
(x-1)2
?對(duì)?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
,滿足條件②.
∴存在a,b,c∈R,使f(x)同時(shí)滿足條件①、②.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的判斷定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案