精英家教網 > 高中數學 > 題目詳情

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(Ⅰ)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(Ⅱ)設(Ⅰ)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項公式及Tn關于n的表達式.
(Ⅲ)記數學公式,求數列{bn}的前n項之和Sn,并求使Sn>2010的n的最小值.

證明:(Ⅰ)由條件得:an+1=2an2+2an,an>0.
∴2an+1+1=4an2+4an+1=(2an+1)2,
∴{2an+1}是“平方遞推數列”.
由lg(2an+1+1)=2lg(2an+1),
且2an+1>1,
∴l(xiāng)g(1+2an)>0,
,
∴{lg(2an+1)}為等比數列.…(3分)
解:(Ⅱ)∵lg(2a1+1)=lg5,
∴l(xiāng)g(2an+1)=lg5•2n-1,

…(5分)
∵lgTn=lg(2a1+1)+lg(2a2+1)+…+lg(2an+1),
=,
…(7分)
(Ⅲ),

=
=.…(10分)
由Sn>2010,得
當n≤1005時,;
當n≥1006時,
因此n的最小值為1006.…(13分)
分析:(Ⅰ)由an+1=2an2+2an,an>0,知2an+1+1=4an2+4an+1=(2an+1)2,所以{2an+1}是“平方遞推數列”.由lg(2an+1+1)=2lg(2an+1),且2an+1>1,知lg(1+2an)>0,由此能夠證明{lg(2an+1)}為等比數列.
(Ⅱ)由lg(2a1+1)=lg5,知lg(2an+1)=lg5•2n-1,所以,由lgTn=lg(2a1+1)+lg(2a2+1)+…+lg(2an+1)=,能求出Tn
(Ⅲ)由,知==由此能求出n的最小值.
點評:本題首先考查等差數列、等比數列的基本量、通項,結合含兩個變量的不等式的處理問題,考查對新定義的理解能力.對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>4020的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區(qū)一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:若數列{an}對任意的正整數n,都有|an+1|+|an|=d(d為常數),則稱{an}為“絕對和數列”,d叫做“絕對公和”,已知“絕對和數列”{an}中,a1=2,“絕對公和”d=2,則其前2012項和S2012的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:若數列{An}滿足An+1=
A
2
n
則稱數列{An}為“平方遞推數列”,已知數列{an}中,a1=2,點{an,an+1}在函數f(x)=2x2+2x的圖象上,其中n的正整數.
(1)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(3)記bn=log2an+1Tn,求數列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•長寧區(qū)一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=x2+4x+2的圖象上,其中n為正整數.
(1)判斷數列{an+2}是否為“平方遞推數列”?說明理由.
(2)證明數列{lg(an+2)}為等比數列,并求數列{an}的通項.
(3)設Tn=(2+a1)(2+a2)…(2+an),求Tn關于n的表達式.

查看答案和解析>>

同步練習冊答案