A、B是橢圓=1(a>b>0)的長軸的兩個(gè)端點(diǎn),過其右焦點(diǎn)F作長軸的垂線與橢圓的一個(gè)交點(diǎn)為M,若sin∠AMB=,則此橢圓的離心率為(    )

A.           B.          C.             D.

解析:本題考查三角公式的靈活應(yīng)用及橢圓基本量的求解;在直角三角形AMF中,設(shè)∠AMF=α,則AF=a+c,MF=,則tanα=,同理在直角三角形MBF中,設(shè)∠BMF=β,則FB=a-c,MF= ,則tanβ=,

則tan(α+β)=

=-3(sin∠AMB=,cos∠AMB=),

故a2=3b2e=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是橢圓
x2
a2
+
25y2
9a2
=1
上的兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),如果|AF2|+|BF2|=
8
5
a
,AB的中點(diǎn)到橢圓左準(zhǔn)線距離為
3
2
,則橢圓的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是橢圓
x2
16
+
y2
12
=1
上的兩點(diǎn),F(xiàn)2是其右焦點(diǎn),如果|AF2|+|BF2|=8,則AB的中點(diǎn)到橢圓左準(zhǔn)線的距離為( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:名師指點(diǎn)學(xué)高中課程 數(shù)學(xué) 高二(下) 題型:013

A、B是橢圓=1(a>b>0)的左、右頂點(diǎn),C、D是過左焦點(diǎn)F的通徑端點(diǎn),過F作垂直于橢圓所在平面的垂線l,且P為l上一點(diǎn),則四棱錐P-ACBD的側(cè)棱中的最短側(cè)棱

[  ]

A.是PC、PD
B.是PA
C.可能是PA,也可能是PC、PD
D.既是PA,又是PC

查看答案和解析>>

同步練習(xí)冊答案