【題目】已知函數(shù)f(x)=|x﹣a|+|x+a|.
(Ⅰ)當(dāng)a=2時,解不等式f(x)>6;
(Ⅱ)若關(guān)于x的不等式f(x)<a2﹣1有解,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)當(dāng)a=2時, . 當(dāng)x>2時,可得2x>6,解得x>3.
當(dāng)﹣2≤x≤2時,因為4>6不成立,故此時無解;
當(dāng)x<﹣2時,由﹣2x>6得,x<﹣3,故此時x<﹣3.
綜上所述,不等式f(x)>6的解集為(﹣∞,﹣3)∪(3,+∞).
(Ⅱ)∵f(x)=|x﹣a|+|x+a|≥|x﹣a﹣x﹣a|=|2a|,
要使關(guān)于x的不等式f(x)<a2﹣1有解,只需|2a|<a2﹣1即可.
當(dāng)a≥0時,2a<a2﹣1,解得 ,或 (舍去);
當(dāng)a<0時,﹣2a<a2﹣1,解得 (舍去),或 ;
所以,a的取值范圍為
【解析】(I)討論x的范圍,去絕對值符號解出;(II)利用絕對值不等式的性質(zhì)求出fmin(x),令fmin(x)<a2﹣1解出.
【考點精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在(0,+∞)上的函數(shù) fx),對于任意正實數(shù) a、b,都有 fab)=fa+fb)﹣1f2)=0,且當(dāng) x1 時,fx)<1

1)求 f1)及的值;

2)求證:fx)在(0+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正實數(shù)a,b,c,函數(shù)f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解關(guān)于x的不等式f(x)+x+1<0;
(Ⅱ)求證:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,點E在CD上,DE=2EC.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值為 ,求三棱錐A﹣BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點,且斜率為

(I)求直線的方程;

)若直線平行,且點P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點,未必是PQ與雙曲線的切點)與拋物線的準(zhǔn)線交于Q,F(xiàn)(0, ),若 |PQ|= |PF|,則拋物線的方程是(
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50

B. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11an (an1)(n≥2),由此歸納出{an}的通項公

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 . (I)求曲線C2的直角坐標(biāo)系方程;
(II)設(shè)M1是曲線C1上的點,M2是曲線C2上的點,求|M1M2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,的中點.

求證:平面.

查看答案和解析>>

同步練習(xí)冊答案