分析 (Ⅰ)設(shè)雙曲線(xiàn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,a>0,b>0,依題意,$\left\{\begin{array}{l}{{a}^{2}+^{2}=4}\\{\frac{a}=\sqrt{3}}\end{array}\right.$,解得即可,
(Ⅱ)聯(lián)立方程組,消元,根據(jù)判別式即可求出k的值.
解答 解:(Ⅰ)設(shè)雙曲線(xiàn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,a>0,b>0,
依題意,$\left\{\begin{array}{l}{{a}^{2}+^{2}=4}\\{\frac{a}=\sqrt{3}}\end{array}\right.$,
解得$a=1\;,b=\sqrt{3}$,所以雙曲線(xiàn)方程x2-$\frac{{y}^{2}}{3}$=1,
(Ⅱ)聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{3{x}^{2}-{y}^{2}-3=0}\end{array}\right.$得(3-k2)x2-2kx-4=0,
因?yàn)橹本(xiàn)與雙曲線(xiàn)有且只有一個(gè)公共點(diǎn),
所以3-k2=0或△=(-2k)2+16(3-k2)=0,
即k2=4或k2=3,
所以k=±$\sqrt{3}$或k=±2.
點(diǎn)評(píng) 本題考查雙曲線(xiàn)的方程和性質(zhì),主要考查漸近線(xiàn)方程的運(yùn)用,以及直線(xiàn)和雙曲線(xiàn)的位置關(guān)系,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{1}{2}]$ | B. | (1,2] | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | D. | -$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 10 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com