【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)的增區(qū)間是;
遞減區(qū)間是;(3).
【解析】試題分析:(1)求出的值可得切點(diǎn)坐標(biāo),再求出,可得的值,即得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(3)對(duì)于任意,都有等價(jià)于,令, ,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最大值,從而可得結(jié)果.
試題解析:(1)因?yàn)楹瘮?shù),所以,
.又因?yàn)?/span>,
所以曲線在點(diǎn)處的切線方程為.
(2)函數(shù)定義域?yàn)?/span>, 由(1)可知, .
令解得.
與在區(qū)間上的情況如下:
減 | 極小值 | 增 |
所以, 的單調(diào)遞增區(qū)間是;
的單調(diào)遞減區(qū)間是.
(3)當(dāng)時(shí),“”等價(jià)于“”.
令, ,
, .
當(dāng)時(shí), ,所以在區(qū)間單調(diào)遞減.
當(dāng)時(shí), ,所以在區(qū)間單調(diào)遞增.
而,
.
所以在區(qū)間上的最大值為.
所以當(dāng)時(shí),對(duì)于任意,都有.
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值或恒成立;④ 討論參數(shù).本題(3)是利用方法 ① 求得實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次有600人參加的數(shù)學(xué)測(cè)試,其成績(jī)的頻數(shù)分布表如圖所示,規(guī)定85分及其以上為優(yōu)秀.
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 36 | 114 | 244 | 156 | 50 |
(Ⅰ)現(xiàn)用分層抽樣的方法從這600人中抽取20人進(jìn)行成績(jī)分析,求其中成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅱ)在(Ⅰ)中抽取的20名學(xué)生中,要隨機(jī)選取2名學(xué)生參加活動(dòng),記“其中成績(jī)?yōu)閮?yōu)秀的人數(shù)”為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是直角梯形, , , ,平面平面.
(Ⅰ)求證: 平面.
(Ⅱ)求平面和平面所成二面角(小于)的大。
(Ⅲ)在棱上是否存在點(diǎn)使得平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(I)當(dāng)a=2時(shí),求曲線y = 在點(diǎn)(0,f(0))處的切線方程;
(II)求函數(shù)在區(qū)間[0 , e -1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿(mǎn)足直線與斜率之積為.試判斷直線是否過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)做圓的兩條切線,切點(diǎn)為.
(1)求拋物線的方程;
(2)若直線是講過(guò)定點(diǎn)的一條直線,且與拋物線交于兩點(diǎn),過(guò)定點(diǎn)作的垂線與拋物線交于兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com