【題目】已知拋物線的準(zhǔn)線與軸交于點,過點做圓的兩條切線,切點為.

(1)求拋物線的方程;

(2)若直線是講過定點的一條直線,且與拋物線交于兩點,過定點的垂線與拋物線交于兩點,求四邊形面積的最小值.

【答案】(1).2.

【解析】試題分析:(1)求得K的坐標(biāo),圓的圓心和半徑,運用對稱性可得MR的長,由勾股定理和銳角的三角函數(shù),可得CK=6,再由點到直線的距離公式即可求得p=2,進而得到拋物線方程;(2)設(shè)出直線方程,運用弦長公式和四邊形的面積公式,換元整理,結(jié)合基本不等式,即可求得最小值.

解析:

(1)由已知得設(shè)軸交于點,由圓的對稱性可知, .

于是,所以,所以,所以.故拋物線的方程為.

2)設(shè)直線的方程為,設(shè)

聯(lián)立,則.

設(shè),同理得,

則四邊形的面積

,則

是關(guān)于的增函數(shù),

,當(dāng)且僅當(dāng)時取得最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個半圓,固定點的中點. 是由電腦控制可以上下滑動的伸縮橫桿(橫桿面積可忽略不計),且滑動過程中始終保持和平行.當(dāng)位于下方和上方時,通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).

(1)設(shè)之間的距離為)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);

(2)當(dāng)之間的距離為多少米時,通風(fēng)窗的通風(fēng)面積取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“累積凈化量()”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累積凈化量,以克表示.根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累計凈化量(有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中.按照均勻分組,其中累積凈化量在所有數(shù)據(jù)有 ,并繪制了如下頻率分布直方圖:

1的值及頻率分布直方圖中的;

2以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?

3從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值,且在處的切線與直線垂直.

(1)求實數(shù)的取值范圍;

(2)是否存在實數(shù),使得函數(shù)的極小值為.若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓兩點,點,且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于曲線 給出下列四個命題:

(1)曲線有兩條對稱軸,一個對稱中心

(2)曲線上的點到原點距離的最小值為1

(3)曲線的長度滿足

(4)曲線所圍成圖形的面積 滿足

上述命題正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點

1)求橢圓的方程;

2)若點是點軸上的垂足,延長交橢圓,求證: 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

同步練習(xí)冊答案