已知橢圓C:+=1(a>b>0)的焦距為4,且過點P(,).

(1)求橢圓C的方程;

(2)Q(x0,y0)(x0y00)為橢圓C上一點.過點Qx軸的垂線,垂足為E.取點A(0,2),連接AE,過點AAE的垂線交x軸于點D.G是點D關于y軸的對稱點,作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點?并說明理由.

 

【答案】

(1) +=1 (2) 直線QG與橢圓C一定有唯一的公共點,理由見解析

【解析】

:(1)因為焦距為4,

所以a2-b2=4.

又因為橢圓C過點P(,),

所以+=1,

a2=8,b2=4,

從而橢圓C的方程為+=1.

(2)一定有唯一的公共點.

由題意,E點坐標為(x0,0).

D(xD,0),=(x0,-2),=(xD,-2).

再由ADAE, ·=0,

xDx0+8=0.

由于x0y00,xD=-.

因為點G是點D關于y軸的對稱點,所以點G,0.

故直線QG的斜率kQG==.

又因Q(x0,y0)在橢圓C,

所以+2=8.

從而kQG=-.

故直線QG的方程為

y=-x-.

將②代入橢圓C方程,

(+2)x2-16x0x+64-16=0.

再將①代入③,化簡得

x2-2x0x+=0.

解得x=x0,y=y0,

即直線QG與橢圓C一定有唯一的公共點.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和雙曲線C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,給出下列命題:
①對于任意的正實數(shù)λ1,曲線C1都有相同的焦點;
②對于任意的正實數(shù)λ1,曲線C1都有相同的離心率;
③對于任意的非零實數(shù)λ2,曲線C2都有相同的漸近線;
④對于任意的非零實數(shù)λ2,曲線C2都有相同的離心率.
其中正確的為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年陜西卷) (14分)

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:=1()的離心率為,短軸一個端點到右焦點的距離為.

(1)求橢圓的方程;

(2)設直線與橢圓交于、兩點,坐標原點到直線的距離為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為,k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:山東省濟南市2010屆高三第二次模擬考試數(shù)學文 題型:選擇題

(本小題滿分12分)

       已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過點N(2,-3).

   (1)求橢圓C的方程;

   (2)求橢圓以M(-1,2)為中點的弦所在直線的方程.

 

查看答案和解析>>

同步練習冊答案