【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如表數(shù)據(jù):

單價x(元)

4

5

6

7

8

9

銷量y(件)

90

84

83

80

75

68

由表中數(shù)據(jù),求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為 (
A.
B.
C.
D.

【答案】B
【解析】解: = (4+5+6+7+8+9)= = (90+84+83+80+75+68)=80 ∵ =﹣4x+a,
∴a=106,
∴回歸直線方程 =﹣4x+106;
數(shù)據(jù)(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6個點中有2個點在直線的下側(cè),即(5,84),(9,68).
則其這些樣本點中任取1點,共有6種不同的取法,
其中這兩點恰好在回歸直線兩側(cè)的共有2種不同的取法,
故這點恰好在回歸直線下方的概率P= =
故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110)[110,120),[120,130),[130,140),[140150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規(guī)定分數(shù)不小于130分的學生為數(shù)學尖子生,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為數(shù)學尖子生與性別有關(guān)?

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)和g(x),其各自導函數(shù)f′(x)f和g′(x)的圖象如圖所示,則函數(shù)F(x)=f(x)﹣g(x)極值點的情況是(
A.只有三個極大值點,無極小值點
B.有兩個極大值點,一個極小值點
C.有一個極大值點,兩個極小值點
D.無極大值點,只有三個極小值點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=etx1﹣tlnx,(t>0)
(Ⅰ)若t=1,證明x=1是函數(shù)f(x)的極小值點;
(Ⅱ)求證:f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.
(1)若a=2 ,A= ,且△ABC的面積S=2 ,求b,c的值;
(2)若sin(C﹣B)=sin2B﹣sinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 , ,若A,B,C是銳角△ABC的三個內(nèi)角,,則 的夾角為(
A.銳角
B.直角
C.鈍角
D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)求證: ;

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】質(zhì)檢部門從企業(yè)生產(chǎn)的產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標值,由測量結(jié)果得到如圖的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,,內(nèi)的頻率之比為.

(Ⅰ)求這些產(chǎn)品質(zhì)量指標值落在區(qū)間內(nèi)的頻率;

(Ⅱ)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機抽取3件,記這3件產(chǎn)品中質(zhì)量指標值位于區(qū)間內(nèi)的產(chǎn)品件數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,g(x)= ,若方程f(x)=g(x)﹣a有且只有一個實數(shù)根,則實數(shù)a的取值集合為

查看答案和解析>>

同步練習冊答案