【題目】已知直線是雙曲線的一條漸近線,點都在雙曲線上,直線軸相交于點,設(shè)坐標原點為.

1)求雙曲線的方程,并求出點的坐標(用表示);

2)設(shè)點關(guān)于軸的對稱點為,直線軸相交于點.問:在軸上是否存在定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若過點的直線與雙曲線交于兩點,且,試求直線的方程.

【答案】(1)(2)存在定點,其坐標為(3)

【解析】

1)求得雙曲線的漸近線方程,可得,由題意可得,可得雙曲線的方程,求出直線的方程,可令,求得的坐標;(2)求得對稱點的坐標,直線方程,令,可得的坐標,假設(shè)存在,運用兩直線垂直的條件:斜率之積為,結(jié)合在雙曲線上,化簡整理,即可得到定點;(3)設(shè)出直線的方程,代入雙曲線的方程,運用韋達定理,由向量數(shù)量積的性質(zhì),可得向量的數(shù)量積為0,化簡整理,解方程可得的值,檢驗判別式大于0成立,進而得到直線的方程.

解:(1)由已知,得,故雙曲線的方程為

為直線AM的一個方向向量,

直線AM的方程為它與軸的交點為

2)由條件,得為直線AN的一個方向向量,

故直線AN的方程為它與軸的交點為

假設(shè)在軸上存在定點,使得,

即存在定點,其坐標為滿足題設(shè)條件.

3)由知,以為鄰邊的平行四邊形的對角線的長相等,故此四邊形為矩形,從而

由已知,可設(shè)直線的方程為并設(shè)

則由

*

符合約束條件(*.

因此,所求直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點,與短軸的一個端點構(gòu)成一個等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點的兩條直線,分別交橢圓兩點,且,求證:直線過定點,并求出定點坐標;

3)在(2)的條件下求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區(qū)的水稻,具有抗旱抗?jié)、抗病蟲害、抗倒伏抗鹽堿等特點.近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農(nóng)業(yè)科學研究所分別抽取了試驗田中的海水稻以及對照田中的普通水稻各株,測量了它們的根系深度(單位:),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數(shù),兩邊分別是海水稻和普通水稻根系深度的個位數(shù),則下列結(jié)論中不正確的是(

A.海水稻根系深度的中位數(shù)是

B.普通水稻根系深度的眾數(shù)是

C.海水稻根系深度的平均數(shù)大于普通水稻根系深度的平均數(shù)

D.普通水稻根系深度的方差小于海水稻根系深度的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當0≤x≤200時,求函數(shù)vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,且經(jīng)過點,它的一個焦點與拋物線的焦點重合.

1)求橢圓的方程;

2)斜率為的直線過點,且與拋物線交于兩點,設(shè)點,的面積為,求的值;

3)若直線過點,且與橢圓交于兩點,點關(guān)于軸的對稱點為,直線的縱截距為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽,經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得分,答錯得分,假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(1)求的分布列;

(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為1000012000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是雙曲線上的兩點,線段的中點為,直線不經(jīng)過坐標原點

1)若直線和直線的斜率都存在且分別為,求證:;

2)若雙曲線的焦點分別為、,點的坐標為,直線的斜率為,求由四點、、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐SABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.

1)若ESD的中點,求證:SB∥平面ACE;

2)若SAABAD2,SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

同步練習冊答案