(文)(本題滿分12分)已知圓軸相切,圓心在直線上,且被直線截得的弦長(zhǎng)為,求圓的標(biāo)準(zhǔn)方程。

試題分析:(文)解:設(shè)所求圓方程為,
由圓心在直線
則圓心為,半徑為,
 而,則

點(diǎn)評(píng):解決該試題的關(guān)鍵是求解圓心坐標(biāo)和圓的半徑。那么要充分利用直線與圓相交時(shí)的性質(zhì),圓心距和弦長(zhǎng),以及圓的半徑的勾股定理來求解,同時(shí)注意圓與坐標(biāo)軸相切意味著圓心的一個(gè)坐標(biāo)確定了。屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線過圓心,交⊙,直線交⊙(不與重合),直線與⊙相切于,交,且與垂直,垂足為,連結(jié).

求證:(1);      
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的周長(zhǎng)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面與球O相交于周長(zhǎng)為的⊙,A、B為⊙上兩點(diǎn),若∠AOB=,且A、B的球面距離為,則的長(zhǎng)度為(    )
A.1            B.         C.       D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,,成等差數(shù)列且公差不為零,則直線被圓截得的弦長(zhǎng)的最小值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知則滿足條件的查找的條數(shù)是____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓心在軸上,且與直線相切于點(diǎn)的圓的方程為____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 已知圓過兩點(diǎn),且圓心上.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線, 為切點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過圓上一點(diǎn)的切線方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案