【題目】已知橢圓的離心率為,焦距為.

(1)求的方程;

(2)若斜率為的直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),為坐標(biāo)原點(diǎn).

①證明:直線的斜率依次成等比數(shù)列.

②若關(guān)于軸對稱,證明:.

【答案】(1); (2)①見解析;②見解析.

【解析】

1)根據(jù)離心率、焦距和可解出,從而得到橢圓方程;(2)①設(shè)直線的方程為:,,,將直線方程與橢圓方程聯(lián)立可得韋達(dá)定理的形式,從而求得;整理可知:,從而證得結(jié)論;②關(guān)于軸對稱可知,由①知,則,利用兩角和差正切公式展開整理,根據(jù)基本不等式求得最小值,經(jīng)驗(yàn)證等號無法取得,從而證得結(jié)論.

(1)由題意可得:,解得:

橢圓的方程為:

(2)證明:①設(shè)直線的方程為:,,

消去得:

,且,

即直線的斜率依次成等比數(shù)列

②由題可知:

由①可知:,

,則兩點(diǎn)重合,不符合題意;可知無法取得等號

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案(a)的概率;

(3)若僅從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過的直線y軸交于點(diǎn)M,滿足O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二面角PABC的大小為120°,且∠PAB=∠ABC90°,ABAP,AB+BC6.若點(diǎn)PA,BC都在同一個球面上,則該球的表面積的最小值為(

A.45πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點(diǎn),.

1)若線段的中點(diǎn)為,求直線的方程;

2)若的斜率為,且過橢圓的左焦點(diǎn),的垂直平分線與軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù),.

1)當(dāng)時,求函數(shù)的圖象在處的切線方程;

2)若函數(shù)在區(qū)間上具有單調(diào)性,求的取值范圍;

3)若函數(shù)有且僅有個不同的零點(diǎn),且,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線過焦點(diǎn)且與拋物線交于兩點(diǎn),當(dāng)直線的傾斜角為30°時,

1)求拋物線方程.

2)在平面直角坐標(biāo)系中,是否存在定點(diǎn),當(dāng)直線旋轉(zhuǎn)時始終都滿足平分.若存在,求出的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一對夫婦為了給他們的獨(dú)生孩子支付將來上大學(xué)的費(fèi)用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年反映社會現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:

研發(fā)費(fèi)用(百萬元)

2

3

6

10

13

15

18

21

銷量(萬盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相關(guān)系數(shù)精確到0.01,并判斷的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);

(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對其進(jìn)行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進(jìn)行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,合格的概率分別為,.兩次檢測過程相互獨(dú)立,設(shè)經(jīng)過兩次檢測后,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.

附:(1)相關(guān)系數(shù)

2,,

查看答案和解析>>

同步練習(xí)冊答案