【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案(a)的概率;

(3)若僅從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)

【答案】(Ⅰ) (Ⅱ) (Ⅲ)見解析

【解析】

(Ⅰ)先設(shè)事件為“隨機(jī)選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于單”,由頻率分布直方圖,即可求出結(jié)果;

(Ⅱ)先設(shè)事件為“甲、乙、丙三名騎手中至少有兩名騎手選擇方案(1)”,設(shè)事件為“甲乙丙三名騎手中恰有人選擇方案(1)”,根據(jù)題意可得,進(jìn)而可求出結(jié)果;

(Ⅲ)先設(shè)騎手每日完成快遞業(yè)務(wù)量為件,得到方案(1)的日工資,方案(2)的日工資 ,再由題中條件分別得到的期望,比較大小即可得出結(jié)果.

(Ⅰ)設(shè)事件為“隨機(jī)選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于單”

依題意,連鎖店的人均日快遞業(yè)務(wù)量不少于單的頻率分別為:

因為

所以估計為.

(Ⅱ) 設(shè)事件為“甲、乙、丙三名騎手中至少有兩名騎手選擇方案(1)”

設(shè)事件為“甲乙丙三名騎手中恰有人選擇方案(1)”,

,

所以三名騎手中至少有兩名騎手選擇方案(1)的概率為

(Ⅲ)設(shè)騎手每日完成快遞業(yè)務(wù)量為

方案(1)的日工資,

方案(2)的日工資

所以隨機(jī)變量的分布列為

;

同理隨機(jī)變量的分布列為

因為,所以建議騎手應(yīng)選擇方案(1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù),).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個動點,當(dāng)時,求點到直線的距離的最大值;

(2)若曲線上所有的點均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x22pyp0)的焦點為F01),過F的兩條動直線ABCD與拋物線交出A、B、C、D四點,直線AB,CD的斜率存在且分別是k1k10),k2

(Ⅰ)若直線BD過點(0,3),求直線ACy軸的交點坐標(biāo)

(Ⅱ)若k1k22,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),實數(shù).

1)討論函數(shù)在區(qū)間上的單調(diào)性;

2)若存在,使得關(guān)于x的不等式成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,,,的中點,相交于點.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1是淋浴房示意圖,它的底座是由正方形截去一角得到,這一角是一個與正方形兩鄰邊相切的圓的圓弧(如圖2.現(xiàn)已知正方形的邊長是1米,設(shè)該底座的面積為S平方米,周長為l米(周長是指圖2中實線部分),圓的半徑為r.設(shè)計的理想要求是面積S盡可能大,周長l盡可能小,但顯然S、l都是關(guān)于r的減函數(shù),于是設(shè),當(dāng)的值越大,滿意度就越高.試問r為何值時,該淋浴房底座的滿意度最高?(解答時π3代入運算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l 橢圓C ,分別為橢圓的左右焦點.

1)當(dāng)直線l過右焦點時,求C的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與橢圓C交于A,B兩點,O為坐標(biāo)原點,若∠AOB是鈍角,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.

(1)求的方程;

(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標(biāo)原點.

①證明:直線的斜率依次成等比數(shù)列.

②若關(guān)于軸對稱,證明:.

查看答案和解析>>

同步練習(xí)冊答案