18.已知函數(shù)f(x)的定義域為[0,2],則函數(shù)f(x-3)的定義域為( 。
A.[-3,-1]B.[0,2]C.[2,5]D.[3,5]

分析 利用復(fù)合函數(shù)的定義求法直接由0≤x-3≤2,即可得函數(shù)f(x-3)的定義域.

解答 解:因為函數(shù)f(x)的定義域為[0,2],
所以0≤x≤2,由0≤x-3≤2,得3≤x≤5,
即函數(shù)的定義域為[3,5],
故選:D.

點(diǎn)評 本題主要考查復(fù)合函數(shù)的定義域的求法,直接代入即可求復(fù)合函數(shù)的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.2B.$\sqrt{6}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1:3,且成績分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見圖).
(1)求a的值,并計算所抽取樣本的平均值$\overline x$(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的2×2列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?
文科生理科生合計
獲獎5
不獲獎
合計200
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為調(diào)查運(yùn)城市學(xué)生百米運(yùn)動成績,從該市學(xué)生中按照男女比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測試,學(xué)生成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)求這組數(shù)據(jù)的中位數(shù)(精確到0.1)
(Ⅱ)根據(jù)有關(guān)規(guī)定,成績小于16秒為達(dá)標(biāo).如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女生達(dá)標(biāo)情況如表:
性別
是否達(dá)標(biāo)
合計
達(dá)標(biāo)a=24b=630
不達(dá)標(biāo)c=8d=1220
合計3218
根據(jù)表中所給的數(shù)據(jù),能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K)0.0500.0100.001
K3.8416.62510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2$\sqrt{3}$sin2x+4cos2x-3
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別為內(nèi)角A、B、C所對的邊,且對x∈R,f(x)的最大值為f(A),若a=2,求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某個幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是(  )
A.$\frac{4}{3}$cm3B.$\frac{8}{3}$cm3C.2cm3D.4cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m-4或x≥8+m}(m<6).
(1)若m=2,求A∩(∁UB);
(2)若A∩(∁UB)=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x∈(1,+∞),則y=2x+$\frac{1}{x-1}$的最小值是2$\sqrt{2}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A,B,離心率為$\frac{\sqrt{2}}{2}$,直線x=-a與y=b交于點(diǎn)D,且|BD|=3$\sqrt{2}$,過點(diǎn)B作直線l交直線x=-a于點(diǎn)M,交橢圓于另一點(diǎn)P.
(1)求直線MB與直線PA的斜率之積;
(2)證明:$\overrightarrow{OM}$•$\overrightarrow{OP}$為定值.

查看答案和解析>>

同步練習(xí)冊答案