【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線城市

一線城市

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

算得,,

參照附表,得到的正確結(jié)論是

A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”

B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”

C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”

D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”

【答案】C

【解析】

根據(jù)的計算公式算得,再與附表對照查值下結(jié)論即可

解:根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式,

,

以上的把握認為生育意愿與城市級別有關(guān)”,

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的長方形ABCD中,動圓Q的半徑為1,圓心Q在線段BC(含端點)上運動,P是圓Q上及內(nèi)部的動點,設(shè)向量 =m +n (m,n為實數(shù)),則m+n的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取100名中學生的筆試成績,按成績分組,得到的頻率分布表如下所示.

組號

分組

頻數(shù)

頻率

1

[160,165)

5

0.050

2

[165,170)

0.350

3

[170,175)

30

4

[175,180)

20

0.200

5

[180,185)

10

0.100

合計

100

1.00

(1)請先求出頻率分布表中①、②位置的相應數(shù)據(jù),再完成頻率分布直方圖,并從頻率分布直方圖中求出中位數(shù)(中位數(shù)保留整數(shù));

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,從這6名學生中隨機抽取2名學生接受A考官進行面試,求:第4組至少有一名學生被考官A面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1,直線l過點M(﹣1,0),與橢圓C交于A,B兩點,交y軸于點N.
(1)設(shè)MN的中點恰在橢圓C上,求直線l的方程;
(2)設(shè) , ,試探究λ+μ是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長為,的中點.

(1)求證:直線平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通項公式;
(2)求數(shù)列{ }的前n項和.

查看答案和解析>>

同步練習冊答案