7.空間二直線a,b和二平面α,β,下列一定成立的命題是( 。
A.若α⊥β,a⊥b,a⊥α,則b⊥βB.若α⊥β,a⊥b,a⊥α,則b∥β
C.若α⊥β,a∥α,b∥β,則a⊥bD.若α∥β,a⊥α,b?β,則a⊥b

分析 對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,B,若α⊥β,a⊥b,a⊥α,則b、β的位置關(guān)系不確定;
對(duì)于C,若α⊥β,a∥α,b∥β,則a、b的位置關(guān)系不確定;
對(duì)于D,若α∥β,a⊥α,則a⊥β,∵b?β,∴a⊥b,正確.
故選D.

點(diǎn)評(píng) 本題考查空間線線、線面位置關(guān)系,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?營(yíng)運(yùn)成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=x3-ax2-x+6在(0,1)上單調(diào)遞減,則實(shí)數(shù)a取值范圍是(  )
A.a=1B.a≥1C.a≤1D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若$\frac{cos2α}{sinα-cosα}$=-$\frac{1}{2}$,則sin(α+$\frac{π}{4}$)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=$\frac{ln(4-x)}{x-2}$的定義域是(  )
A.(-∞,4)B.(2,4)C.(0,2)∪(2,4)D.(-∞,2)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在極坐標(biāo)系中,點(diǎn)(1,$\frac{π}{4}$)與點(diǎn)(1,$\frac{3π}{4}$)的距離為(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z滿足(1+i)z=2,則z=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=EC=$\frac{1}{2}A{A}_{1}$.求證:
(1)AC1∥平面BDE;
(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)$y=sin(ωx+\frac{π}{6})(ω>0)$的圖象與x軸正半軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,若要得到函數(shù)g(x)=sinωx的圖象,只要將f(x)的圖象(  )個(gè)單位.
A.向左平移$\frac{π}{12}$B.向右平移$\frac{π}{12}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案