16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,則$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

分析 由已知條件利用對(duì)數(shù)運(yùn)算法則和分段函數(shù)性質(zhì)得$f(2-{log_{\frac{1}{2}}}3)$=f(2+log23)=f(3+log23)=$(\frac{1}{2})^{3+lo{g}_{2}3}$,由此利用對(duì)數(shù)性質(zhì)、換底公式和有理數(shù)指數(shù)冪運(yùn)算法則能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,
∴$f(2-{log_{\frac{1}{2}}}3)$=f(2+log23)=f(3+log23)=$(\frac{1}{2})^{3+lo{g}_{2}3}$
=$(\frac{1}{2})^{3}×(\frac{1}{2})^{lo{g}_{2}3}$
=$\frac{1}{8}×\frac{1}{3}$
=$\frac{1}{24}$.
故答案為:$\frac{1}{24}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)、指數(shù)的性質(zhì)、運(yùn)算法則和對(duì)數(shù)換底公式及函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.全集U={2,3,a2+2a-3},A={|a+7|,2},∁uA={5},則實(shí)數(shù)a=(  )
A.2,-4B.-2,4C.2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.不等式ex≥kx對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)k的最大值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=log2$\frac{x}{1-x}$.
(1)求函數(shù)的定義域;
(2)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),解不等式f(t)-f(2t-$\frac{1}{2}$)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)f(x)=($\frac{1}{m}$)|x|,m>1,x∈R,那么f(x)是( 。
A.偶函數(shù)且在(0,+∞)上是增函數(shù)B.奇函數(shù)且在(0,+∞)上是增函數(shù)
C.偶函數(shù)且在(0,+∞)上是減函數(shù)D.奇函數(shù)且在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)是偶函數(shù),f(-1)=0,f(x)在[0,+∞)上是增函數(shù),則f(x)<0的解集為( 。
A.(-1,0)B.(-1,1)C.(0,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題P:方程x2+y2+2ax+a=0表示圓;命題Q:方程ax2+2y2=1表示焦點(diǎn)在x軸上的橢圓,若P∧Q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)定義在區(qū)間(-a,a)上的函數(shù)$f(x)={log_{2015}}\frac{1+mx}{1-2015x}$是奇函數(shù)(a,m∈R,m≠-2015),則ma的取值范圍是( 。
A.$(1,{2015^{\frac{1}{2015}}}]$B.$(0,{2015^{\frac{1}{2015}}}]$C.$(1,{2015^{\frac{1}{2015}}})$D.$(0,{2015^{\frac{1}{2015}}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案