(本小題共14分)
已知雙曲線的離心率為,右準線方程為
(Ⅰ)求雙曲線的方程;(Ⅱ)設直線是圓上動點處的切線,與雙曲線交于不同的兩點,證明的大小為定值..
(Ⅰ) (Ⅱ)的大小為..
【解法1】本題主要考查雙曲線的標準方程、圓的切線方程等基礎知識,考查曲線和方程的關系等解析幾何的基本思想方法,考查推理、運算能力.
(Ⅰ)由題意,得,解得,
∴,∴所求雙曲線的方程為.
(Ⅱ)點在圓上,
圓在點處的切線方程為,化簡得.
由及得,
∵切線與雙曲線C交于不同的兩點A、B,且,
∴,且,設A、B兩點的坐標分別為,
則,∵,且
,
.∴ 的大小為..
【解法2】(Ⅰ)同解法1.
(Ⅱ)點在圓上,圓在點處的切線方程為,化簡得.由及得
① ②
∵切線與雙曲線C交于不同的兩點A、B,且,
∴,設A、B兩點的坐標分別為,則,
∴,∴ 的大小為.. (∵且,
∴,從而當時,方程①和方程②的判別式均大于零).
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
數(shù)列的前n項和為,點在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足,求數(shù)列的前n項和
(III)設,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設直線是圓上動點處的切線,與雙曲線交
于不同的兩點,證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆度廣東省高二上學期11月月考理科數(shù)學試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD底面ABCD,PD=DC,點E是PC的中點,作EFPB交PB于點F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學 來源:2010年北京市崇文區(qū)高三下學期二模數(shù)學(文)試題 題型:解答題
(本小題共14分)
正方體的棱長為,是與的交點,為的中點.
(Ⅰ)求證:直線∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com