設(shè)變量x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標(biāo)函數(shù)z=x-y+1的最小值為0,則m的值等于
 
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=x-y+1化為y=x+1-z,1-z相當(dāng)于直線y=-y=x+1-z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=x-y+1化為y=x+1-z,1-z相當(dāng)于直線y=-y=x+1-z的縱截距,
則由x-y+1=0與y=2x-1解得,x=2,y=3,
則m=2+3=5.
故答案為:5.
點評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個焦點在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為(  )
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),則
a1
2
+
a2
22
+…+
a2013
22013
的值為( 。
A、-1B、0C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn滿足Sn=
2n
n+1
,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人忘記了電話號碼的最后一個數(shù)字,隨意撥號,則撥號不超過3次而接通電話的概率為( 。
A、
9
10
B、
3
10
C、
1
8
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(k-2)x2+(k-1)x+3是偶函數(shù),則f(x)的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與函數(shù)g(x)=log 
1
2
x的圖象關(guān)于直線y=x對稱,則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的部分圖象如圖所示,將y=f(x)的圖象向右平移
π
4
個單位后得到函數(shù)y=g(x)的圖象.則函數(shù)y=g(x)的單調(diào)增區(qū)間為(  )
A、[kπ-
π
6
,kπ+
π
3
],k∈Z
B、[kπ+
π
6
,kπ+
π
2
],k∈Z
C、[kπ-
π
6
,kπ+
3
],k∈Z
D、[kπ+
π
6
,kπ+
6
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
,且此函數(shù)的圖象過點(1,5).
(1)求實數(shù)m的值,并判斷f(x)的奇偶性;
(2)判斷f(x)在[1,2]上的單調(diào)性,并用單調(diào)性定義證明.

查看答案和解析>>

同步練習(xí)冊答案